CS1231S: Discrete Structures

Tutorial #6: Functions

(Week 8: 6 – 10 October 2025)

I. Discussion Questions

- D1. Which of the following is a function? If it is not a function, explain.
 - (a) Define $f: \mathbb{Z} \to \mathbb{Z}$ by $\forall z \in \mathbb{Z}$, $f(z) = \begin{cases} 1, & \text{if } 2 \mid z, \\ 2, & \text{if } 3 \mid z. \end{cases}$
 - (b) Define $f: \mathbb{Z} \to \mathbb{Z}$ by $\forall z \in \mathbb{Z}$, $f(z) = \begin{cases} 1, & \text{if } 2 \mid z, \\ 2, & \text{if } 2 \nmid z. \end{cases}$
 - (c) Define $f: \mathbb{R} \to \mathbb{Z}$ by $\forall x \in \mathbb{R}$, f(x) = 2x.
 - (d) Define $f: \mathbb{Z} \to \mathbb{R}$ by $\forall x \in \mathbb{Z}$, f(x) = 2x.
- D2. Let function $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}$ be defined by setting, $\forall x. y \in \mathbb{Z}$, $f(x,y) = \frac{x+y}{3}$. Find three distinct pre-images of 2.
- D3. Definitions: Given any real number x,
 - (1) the **floor** of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \leq x < n+1$;
 - (2) the **ceiling** of x, denoted $\lceil x \rceil$, is the unique integer n such that $n-1 < x \le n$.

Let $f, g: \mathbb{Q} \to \mathbb{Q}$ be defined by setting, for each $x \in \mathbb{Q}$,

$$f(x) = |x| + 1$$
 and $g(x) = [x]$.

What is the range of f? What is the range of g? Is f = g? Why?

- D4. To prove that a composition of two surjections is a surjection, Aiken wrote:
 - 1. Suppose $f: X \to Y$ and $g: Y \to Z$ are surjections.
 - 2. Then $\forall y \in Y \exists x \in X \text{ such that } f(x) = y \text{ as } f \text{ is surjective,}$
 - 3. and $\forall z \in Z \ \exists y \in Y \ \text{such that } g(y) = z \ \text{as } g \ \text{is surjective.}$
 - 4. So $(g \circ f)(x) = g(f(x)) = g(y) = z$.
 - 5. Hence $g \circ f$ is a surjection.

Explain the mistakes in this "proof".

II. Tutorial Questions

1. Define the following relations on N:

$$\forall x, y \in \mathbb{N} (x R_1 y \Leftrightarrow x^2 = y^2);$$

 $\forall x, y \in \mathbb{N} (x R_2 y \Leftrightarrow y \mid x);$
 $\forall x, y \in \mathbb{N} (x R_3 y \Leftrightarrow y = x + 1).$

Are the relations R_1 , R_2 and R_3 functions? Prove or disprove.

- 2. Let $A = \{s, u\}$. Define a function $len: A^* \to \mathbb{Z}_{\geq 0}$ by setting $len(\sigma)$ to be the length of σ for each $\sigma \in A^*$.
 - (a) What is len(suu)?
 - (b) What is $len(\{\varepsilon, ss, uu, ssss\})$?
 - (c) What is $len^{-1}(\{3\})$?
 - (d) Does len^{-1} exist? Explain your answer.
- 3. Given any two bijections $f: A \to B$ and $g: B \to C$, prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
- 4. Which of the functions defined in the following are injective? Which are surjective? Prove that your answers are correct. If a function defined below is both injective and surjective, then find a formula for the inverse of the function. Here we denote by *Bool* the set {true, false}.
 - (a) $f: \mathbb{Q} \to \mathbb{Q}$; $x \mapsto 12x + 31$.
 - (b) $g: Bool^2 \rightarrow Bool;$ $(p,q) \mapsto p \land \sim q.$
 - (c) $h: Bool^2 \rightarrow Bool^2$; $(p,q) \mapsto (p \land q, p \lor q)$.
 - (d) $k: \mathbb{Z} \to \mathbb{Z}$; $x \mapsto \begin{cases} x, & \text{if } x \text{ is even;} \\ 2x - 1, & \text{if } x \text{ is odd.} \end{cases}$
- 5. [AY2022/23 Semester 2 Exam Questions] The following definitions are given.

Given a function $f: A \rightarrow B$, we say that

- $g: B \to A$ is a **left inverse** of f if and only if g(f(a)) = a for all $a \in A$.
- $h: B \to A$ is a **right inverse** of f if and only if f(h(b)) = b for all $b \in B$.

You do not need to provide proofs for the following parts.

- (a) Which of the 4 functions given in question 5 have a left inverse?
- (b) Which of the 4 functions given in question 5 have a right inverse?
- (c) Which of the following statements are true?
 - (i) If a function has a left inverse, then it has a right inverse.
 - (ii) If a function has a right inverse, then it has a left inverse.

- 6. We have shown in Theorem 7.3.3 that if $f: X \to Y$ and $g: Y \to Z$ are both injective, then $g \circ f$ is injective. Now, let $f: B \to C$. Suppose we have a function g with domain C such that $g \circ f$ is injective. Show that f is injective.
- 7. Let $A = \{1,2,3\}$. The **order** of a bijection $f: A \to A$ is defined to be the smallest $n \in \mathbb{Z}^+$ such that

$$\underbrace{f \circ f \circ \cdots \circ f}_{n\text{-many } f'\mathsf{s}} = id_A.$$

Define functions $g, h: A \to A$ by setting, for all $x \in A$,

$$g(x) = \begin{cases} 1, & \text{if } x = 2; \\ 2, & \text{if } x = 1; \\ x, & \text{otherwise,} \end{cases} \qquad h(x) = \begin{cases} 2, & \text{if } x = 3; \\ 3, & \text{if } x = 2; \\ x, & \text{otherwise.} \end{cases}$$

Find the orders of g, h, $g \circ h$, and $h \circ g$.

8. [AY2023/24 Semester 2 Exam Questions]

Recall Theorem 4.4.1 (The Quotient-Remainder Theorem):

"Given any integer n and positive integer d, there exist unique integers q and r such that n = dq + r and $0 \le r < d$."

Definitions:

Let $n \in \mathbb{Z}$ and $d \in \mathbb{Z}^+$. Suppose n = dq + r and $0 \le r < d$, we define n % d = r.

Given a function f(x), we define the function $f^{(n)}(x)$ to be the result of n applications of f to x, where $n \in \mathbb{Z}^+$. For example, $f^{(3)}(x) = f\left(f(f(x))\right)$. We also define the **order** of an input x with respect to f to be the smallest positive integer m such that $f^{(m)}(x) = x$.

Define a function $g: A \to A$ by setting, for each $x \in A$, g(x) = 3x % 5.

- (a) What is $g^{(3)}(21)$?
- (b) What is the order of 3 with respect to the function g?
- (c) Let $A = \{0,1,2,3,4\}$. Define the relation R on A as follows:

x R y iff the order of x is equal to the order of y with respect to the function g.

R is an equivalence relation. Write out all the distinct equivalence classes of R using <u>set-roster</u> <u>notation</u>. Do not use the [] notation.

- 9. Let $f: A \to B$ be a function. Let $X \subseteq A$ and $Y \subseteq B$. Justify your answers for the following:
 - (a) Is it always the case that $X \subseteq f^{-1}(f(X))$? Is it always the case that $f^{-1}(f(X)) \subseteq X$?
 - (b) Is it always the case that $Y \subseteq f(f^{-1}(Y))$? Is it always the case that $f(f^{-1}(Y)) \subseteq Y$?

Note that f(X) is the (setwise) image of X, and $f^{-1}(Y)$ the (setwise) preimage of Y under f, where $X \subseteq A$ and $Y \subseteq B$. Without the colored font to disambiguate the two kinds of functions, it should also be clear what f(U) denotes, depending on whether $U \in A$ or $U \in P(A)$.

10. Consider the equivalence relation \sim on \mathbb{Q} defined by setting, for all $x, y \in \mathbb{Q}$, $x \sim y \Leftrightarrow x - y \in \mathbb{Z}$.

Define addition and multiplication on \mathbb{Q}/\sim as follows: whenever $[x],[y]\in\mathbb{Q}/\sim$,

$$[x] + [y] = [x + y]$$
 and $[x] \cdot [y] = [x \cdot y]$.

- (a) Is + well defined on \mathbb{Q}/\sim ?
- (b) Is well defined on \mathbb{Q}/\sim ?

Prove that your answers are correct.