

Lecture 8

Lambdas and Streams

Previously, in cs2030..

class Square implements Function<Integer, Integer>

1
public Integer apply(Integer x) {

return x*x;

¥
¥

applylList(list, new Square());

applyList(list, new Function<Integer,Integer>() {
public Integer apply(Integer x) {
return x * x;

}
¥

we know applyList expects a Function<Integer,Integer>

N\

applyList(list, new Function<Integer,Integer>() {
public Integer apply(Integer x) {

return x * Xx; \

})) only one method is abstract in Function

applyList(list, x -> {
return x * x;

}
DK

applyList(list, x -> x * x);

\

actually an anonymous class

Recap: an anonymous class can
access:

- final / eff. final local variables
- members of enclosing class

rng = new RandomGenerator(..)
Customer ¢ = new Customer(
() -> rng.genServicelTime()

)

Closure

ref to enclosing object

rng

C) > ..

Memory Model

ref to enclosing object Heap

copy of local vars Heap

C) —> .. Method area

Function for Cross-
Barrier Manipulation

Abstraction Barrier

usage
public methods \ client
affect the internal states /\
v

| | implementer
implementation

usage
client
A f)\

T

AT
implementer

implementation

® NaN
® null

f: X->Y

domain co-domain

[call it my billion-dollar mistake. It was the invention of the
null reference in 1965. At that time, I was designing the first
comprehensive type system for references in an object
oriented language (ALGOL W). My goal was to ensure that
all use of reterences should be absolutely safe, with
checking performed automatically by the compiler. But I
couldn't resist the temptation to put in a null reference,
simply because it was so easy to implement. This has led to
innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and
damage in the last forty years.

- Sir Tony Hoare

https://en.wikipedia.org/wiki/ALGOL_W

shop.findIdleServer()
.serve(customer);

f: X->Y

domain co-domain

wrap a nullable reference in an Optional object

a reference or nul L

server = shop.findIdleServer();
1f (server != null) {
server.serve(customer);

¥

shop.findIdleServer()
.1fPresent(s -> s.serve(customer))

server = shop.findIdleServer();
1f (server == null) {
server = shop.findShortestQueue();
1f (server == null) {
customer.leave();
} else {
server.serve(customer);

¥
¥

shop.findIdleServer()
.or(shop: :findShortestQueue)
.1fPresentOrElse(
s -> s.serve(customer),
customer: :leave);

Function IS
Delayed Data

Infinite List:
A tale of two functions

head () -> .
- o> QOO0

Stream in Java 8

A Lazy (Possibly Infinite) List
and more..

filter

map

\ 4 v v \ 4 v v v

map

@ © @6

000

@)

OCC

flatMap

@ O @
Q00 @0 OOC

reduce

%:gQQQQr

O

boolean 1sPrime(int x) {
for (int 1 =2; 1 <= x-1; 1++) {
1f (X% 1 ==0) {
return false;
§
§

return true;

¥

void fiveHundredPrimes() {
1nt count = 0;
int 1 = 2;
while (count < 500) {
1f (isPrime(i)) {
System.out.println(i);
count++;
$
1++;
¥
¥

void fiveHundredPrime() {
1nt count = 0;
int 1 = 2;
while (count < 500) {
1t (isPrime(i)) {
System.out.println(i);
count++;
¥
1++;
5
¥

vold fiveHundredPrimes() {
IntStream.1terate(Z2, x -> x+1)
filter(x -> 1sPrime(x))
.L1m1t(500)
.forEach(System.out: :println);

