

Lecture 12

Previously, in cs2030..

Final Exam

e Open Book: bring your notes!

e APlIs (not in the notes) will be
provided

e Covers Lecture1-12,Lab0-6
with more emphasis on topics not
covered in midterm

e MCQs with short questions

e Mixed of conceptual and
programming questions

Abstractions

Abstractions

e Abstraction of data: types
o Abstraction of instructions: methods

e Composite data type: classes and
objects

Abstractions

e Abstraction of common behaviours
across different types: generic types

e Abstraction of common behaviours
over different behavior: lambdas

Abstractions

e One of the most important concepts
iIn computer science for dealing with
complexity (in our case, complex
code)

e You will see abstractions in computer
architecture, OS, DB, networking, etc.

Encapsulation: Grouping
data and related methods
together in a class.

Circle

- X, Y, I

- getArea()
- getPerimeter()
- contains(x, y)

area = 3.1416*r*r; area = @.7854*d*d; area

Abstraction Barrier

usage of circle
client

| | | implementer
implementation of circle

New mindset:
Write code for others

Data Hiding

Circle

pnvate Pl - X, Y, I

- getArea()

public -> - getPerimeter()
- contains(x, y)

Avoid getters and setters

“If we need to know the internal and do
something with it, we are doing it wrong. The

right approach is to Imp

ement a method

within the class that do whatever we want the
class to do.” - Lecture

// getter for radius
double circumference

2*c.getR()*3.1415926;

// better
double circumference

c.getCircumference();

In Lab 1b: Many did this in either Event or Customer class.

ArrayList<Server> servers = shop.getServers();
Server 1idleServer = null;
for (Server s : servers) {
Customer ¢ = s.getCurrentCustomer();
1f (¢ == null) {
1dleServer = s;
break;

¥
¥

You need to know that

e getCurrentCustomer returns a

Customer reference or a null (not an
id or -1)

e getServers() returns an ArrayList, not
a LinkedList

This Is better

List<Server> servers = shop.getServers();
Server 1idleServer = null;
for (Server s : servers) {
1f (s.1isldle()) {
1dleServer = s;
break;

¥
¥

You still need to know that

e getServers() returns a List, not an
array

Note: this code does not make use of any fields
from Event or Customer or Simulator

List<Server> servers = shop.getServers();
Server 1idleServer = null;
for (Server s : servers) {
1f (s.1isldle()) {
1dleServer = s;
break;

¥
¥

This Is better

Server server = shop.getFirstIdleServer();

Type

 Java is a strongly typed language
» Java Is a statically typed language
+ Subtyping

» [ype conversion

» Variance of type

» Generic type

Use the type system
wisely to catch bugs at
compile time, not runtime.

String state = server.getState();
switch (state) {
case “Idle”:
doSomething();
case “Busy”:
doSomethingElse();

Type Safe

ServerState state = server.getState();
switch (state) {
case ServerState.IDLE:
doSomething();
case ServerState.BUSY:
doSomethingElse();

DoneEvent(double time,
1nt serverld,
1nt customerld) {

Type Safe

DoneEvent(double time,
Server server,
Customer customer) {

Inheritance: Abstract out
common properties/methods
Into a common parent class.

PaintedShape

- f111IWith
- setBorderColor
- setBorderThickness

PaintedCircle PaintedTriangle

- getArea - getArea
- getPerimeter - getPerimeter
- contains - contains

AY17/18 Sem 2

ArrivalEvent DoneEvent BackEvent

AY17/18 Sem 2

Server

Machine

AY17/18 Sem 2

Customer

AY17/18 Sem 2

"Each significant piece of functionality in a program
should be implemented in just one place in the
source code. Where similar functions are carried
out by distinct pieces of code, it is generally
beneficial to combine them into one by abstracting
out the varying parts.”

The Abstraction Principle

Customer

Normal

Varying parts ->

AY17/18 Sem 2

Unfortunately, in Lab 2b

Customer

- arrive
- waitBegin
- serveBegin ..

NormalCustomer GreedyCustomer

- arrive - arrive
- waitBegin - waitBegin
- serveBegin .. - serveBegin ..

AY17/18 Sem 2

(Subtype) Polymorphism:
Behavior of an object depends
on its type during run-time

for (Printable o: objs) {
o.print();
}

for (Printable o: objs) {
1f (o instanceof Circle) {
o.printCircle();
} else 1f (o instanceof Point) {
o.printPoint();
}
}

What if we need to
add more printables?

for (Printable o: objs) {
1f (o instanceof Circle) {
o.printCircle();
} else 1f (o instanceof Point) {
o.printPoint();
} else 1f (o instanceof Square) {

} else 1f (C ..

for (Printable o: objs) {
o.print();
}

Unfortunately, in Lab 2b

1f (s instanceof HumanServer) {
s.shouldRest();

¥

1f (c instanceof GreedyCustomer) {
c.findShortestQueue()

else 1f (¢ instanceof NormalCustomer) {
c.findFirstAvailableQueue();

¥

(Subtype) Polymorphism:
Behavior of an object depends
on its type during run-time

Other Types of Polymorphism

e ad hoc polymorphism (aka method
overloading)

e parametric polymorphism (aka
generics in Java)

Other Types of Polymorphism

e ad hoc polymorphism (aka method
overloading)

e parametric polymorphism (aka
generics in Java)

S.0.L.I.D. Principles

Liskov Substitution Principle

(SOID in CS2103)

OO Design Patterns

The Observer Pattern
The Strategy/Policy Pattern

(The rest in CS2103/CS3219)

Composition: HAS-A
Inheritance: IS-A

New mindset:
Write code for others
(incl your future self)

* Provide a clear interface
 Hide your implementation details

e Provide documentation

* Make your code clean and readable,
following a certain convention

* Allow extension by inheritance

“Always code as if the guy who ends up
maintaining your code will be a violent
psychopath who knows where you live”

- John F Wood

Modern Programming
Constructs

Optional to avoid null

Future/Promises to represent data
that is not yet available

Monads to chain and manipulate
variables Iin certain context

Threads/tasks as abstraction for
concurrent programming

Effect-free
Programming

Pure vs. unpure functions
Immutable data types
No side effects

Made parallelization simple

Lazy evaluation

e Asynchronous programming

e |nfinite data structures

Anonymous Class
SAM
Lambda Expression

new Comparator<Event>() {
public i1nt compare(Event el, Event e2) {
return el.earlierThan(el);

¥
¥

Function<Integer,Integer> sqr = new
Function<Integer,Integer>() {
public Integer apply(Integer x) {
return x * Xx;

}
}s

Function<Integer,Integer> 1incr
Function<Integer,Integer>() {
public Integer apply(Integer x) {
return x + 1;

}
}s

New

Function<Integer,Integer> sqgr = rew

= - = - - -

. 7 g S o~ S ~ - S~ ~
_ ii’ e SOEs v o =a _ T e - B o e .' "

3)

y(Integer x) {

Function<Integer,Integer> sqgr =
(Integer x) -> {
return x * Xx;

s

Function<Integer,Integer> sqgr =

ger X) -> 1
~+edurr- X ¥ X;

s

Function<Integer,Integer> sqgr =
X -> X * x;

Function<Integer,Integer> sqgr =
X -> X * Xx;

Function<Integer,Integer> 1incr
X -> X + 1;

Function<Integer,Integer> sqgr =
X -> X * Xx;

Function<Integer,Integer> incr =
X -> X + 1;

sqr.apply(4);

incr.apply(5);

Predicate<T>
® boolean test(T t)

Supplier<T>
e T get()

Consumer<T>
e volid accept(T t)

B1Function<T,U,R>
e R apply(T t, U u)

Lambdas can be

- partially evaluated

» evaluated later

* passed around

* COMpPOSedA auring run
time

Infinite stream of values
e filter

* map

* reduce

void fiveHundredPrime() {
1nt count = 0;
int 1 = 2;
while (count < 500) {
1t (isPrime(i)) {
System.out.println(i);
count++;
¥
1++;
5
¥

vold fiveHundredPrimes() {
IntStream.1terate(Z2, x -> x+1)
filter(x -> 1sPrime(x))
.L1m1t(500)
.forEach(System.out: :println);

Shop(1int numOfServers) {
this.servers = Stream
.1terate(@, 1 -> 1 + 1)
.map(1 -> new Server(i))
. Limit(numOfServers)
.collect(Collectors.tolList());

return servers.stream()
.filter(s -> s.equals(server))
findFirst()

.flatMap(s -> s.getWaitingCustomer());

return new Shop(servers.stream()
.map(s -> (s.equals(server) 7 server : S))
.collect(Collectors.toList()));

scanner . tokens()
.map(line -> Double.parseDouble(line))
.reduce(sim.state,
(state, time) -> state.addEvent(time,
S -> s.simulateArrival(time)),
(Xa YD -> X)
.run();

reduce

%:gQQQQr

O

reduce

empty pg arrival time

QQQQ?)

Monad & Functor

Explained in OO way

Thing(s) in a box (briefcase) in a certain context

“modify things Iin a box”

f: Function<T, R>

Tt .map(f) g Rr

% Y, _ J

Functor

f: Function<T,

Tt

N

flatMap(f) —

>

Monad

Explained in OO way

Class Context / Box

Stream A sequence of values

Optional A value that maybe there

A value that will be available

CompletableFuture in the future

Let’s build a Monad

Monad

Explained in OO way

Class Context / Box

Logger A value with logged history
Stream A sequence of values
Optional A value that maybe there

A value that will be available

CompletableFuture in the future

usage
client
A f)\

T

AT
implementer

implementation

Fork and Join

|

boss (==

|

left-hand man right-nand man

do my homework
for me!

|

boss (=

|

left-hand man right-nand man

boss

®
left.fork() ﬂ ﬂ right.fork()

Left-hand man, are
you done?

left.join()

M

boss

(working concurrently)

I

Here it is, boss!

left.join()

boss

Right-hand man, are

you done?

right.join()

right.join()

L

do my homework
for me!

left-hand man

boss

|

=

|

right.compute()

left.fork() ﬂ

&

(working concurrently)

| am done. How

about you, left?

left.join()

Here it is, boss!

left.join()

boss

OOP vs FP

e We are not telling you

e “OO0P is the best way to write your
code!”

e nor “FP is the best way to write
your code!”

e \We are just saying, “here are the
different, possibly better ways, to
write your code.”

e OOP’s strength is polymorphism
(abstractions over function pointers)

e FP’s strength is immutabillity

Michael Feathers ()
Follow v
@mfeathers

OO makes code understandable by
encapsulating moving parts. FP makes code
understandable by minimizing moving parts.

8:27 AM - 3 Nov 2010

434 Retweets 371 Likes 2 ' . Q 8 ﬁ @ Q e

QO 6 11 434) 3

“O0 programming is good, when you
know what it is. Functional
programming is good when you know
what it is. And functional OO
programming is also good once you
know what it is.”

- Uncle Bob, OO vs FP

Java vs Others

e You don’t always have a choice In
programming language

e But if you do, there are many
possibilities

 Functional: Haskell, Erlang, OCaml
e Concurrent / Parallel: Erlang, Go

e Multi-paradigm: Javascript, Kotlin,
Clojure, Scala, Goovy etc.

e Have to use Java? Consider
e Google Guava

e Apache Commons

e Functional Java / JOOA

What'’s Next after
CS2030 ?

CS2103

Intro to Software Enginering

CS2104

Concepts of Programming
Languages

CS3210/11

Parallel Computing
Parallel / Concurrent Programming

Conclusion

e | hope CS2030 has:

e |level-up your software development
skills and experience

e expand your mind about different
ways of writing programs

imperative
programming

object
oriented

functional
programming

