
1

CS2030 Midterm
Discussion
17/18 Semester 2

2

To ask for regrade: Please submit
your script back to your TA with a
note. We will collect and get back.

3

Question 2. Recall that we can override
the method equals in the class Point (as
defined in CS2030) so that two Point
objects are equal if they have the same x and
y coordinates. Overriding equals may or
may not violate LSP. It depends on what the
specified properties of equals in the class
Object are.

Which of the following property of equals, if
specified, would cause Point to violate the
LSP?

4

For two variables of type Object, o1 and o2,
o1.equals(o2) is true if and only o1 ==
o2

This would cause Point to violate LSP
because the behavior of Point is now
different.

5

For two variables of type Object, o1 and o2,
o1.equals(o2) is true if and only
o2.equals(o1).

This is the symmetric property.

The equals() method in Point does not
violate this property, so no violation of LSP.

6

For two variables of type Object, o1 and o2,
o1.equals(o2) is true if and only if
o1.equals(o3) => o3.equals(o2) for
some o3

The equals() method in Point does not
violate this property, so no violation of LSP.

Answer: A (i) only.

7

Question 5.

class Out {
int x;
class In {

int y;
}
void foo(int z) {

x = 1; // (A)
z = 1; // (B)
class Local extends In {
void bar() {
int w;
w = x; // (C)
w = y; // (D)
w = z; // (E)

}
}

}
}

8

Question 5.

class Out {
int x;
class In {

int y;
}
void foo(int z) {

x = 1; // (A)
z = 1; // (B)
class Local extends In {
void bar() {
int w;
w = x; // (C)
w = y; // (D)
w = z; // (E)

}
}

}
}

Inner class

Local class

z is local variable

9

Question 5.

class Out {
int x;
class In {

int y;
}
void foo(int z) {

x = 1; // x is not a local variable. OK
z = 1; // not ok - captured so must be final.
class Local extends In {
void bar() {
int w;
w = x; // ok to access enclosing class
w = y; // ok to access parent class
w = z; // not ok – z is not final

}
}

}
}

Answer: A

10

Question 5.

class Out {
int x;
class In {

int y;
}
void foo(int z) {

x = 1; // x is not a local variable. OK
z = 1; // not ok - captured so must be final.
class Local extends In {
void bar() {
int w;
w = x; // ok to access enclosing class
w = y; // ok to access parent class
w = z; // not ok – z is not final

}
}

}
}

Answer: A

11

Question 9.

A module has multiple assessments. There
are three types of assessments: lab
assignment, test, and project, each to be
graded in a different way.

12

The nouns

A module has multiple assessments. There
are three types of assessments: lab
assignment, test, and project, each to be
graded in a different way.

Module Assessment

Lab Test Project

13

Question 10.

A module has multiple assessments. There
are three types of assessments: lab
assignment, test, and project, each to be
graded in a different way.

Module Assessment

Lab Test Project

HAS-A

IS-A

14

The relationship

A module has multiple assessments. There
are three types of assessments: lab
assignment, test, and project, each to be
graded in a different way.

Module Assessment

Lab Test Project

HAS-A

IS-A

15

Overriding / polymorphism

A module has multiple assessments. There
are three types of assessments: lab
assignment, test, and project, each to be
graded in a different way.

Module Assessment

Lab Test Project

HAS-A

IS-A

16

class A {
:

@Override
int hashCode() {

return 8888;
}

}

Question 10

(b) Why is it a bad practice?

17

• Violate LSP?
No. In fact, part (a) says that it
still satisfies the required
property of

18

• Shouldn’t use magic number
Yes. But not the most glaring
error (0.5 marks)

19

• All objects will be equal!
No. Note that Property P does
not say

x.hashCode() == y.hashCode()
=> x.equals(y)

20

• HashMap / HashSet will stop
working
No. Still can hash into buckets.
Can still search for equality.

21

• HashMap / HashSet will be
slower
Yes. All elements will be in the
same bucket now. Have to
search and compare each one
to find a match.

22

• equals() cannot use hashCode()
to filter out non-equal objects.
Yes.

boolean equals(Object o) {
if (hashCode() != o.hashCode()) {
return false;
}
// do usual comparison

}

23

Question 11

Already discussed in lecture.

24

Question 12

void printInteger(List<Integer> list) {
for (Integer i : list) {
if (i.byteValue() > 0) {
// print

}
}

}

25

Question 12

void printDouble(List<Double> list) {
for (Double i : list) {
if (i.byteValue() > 0) {
// print

}
}

}

26

Question 12

void printLong(List<Long> list) {
for (Long i : list) {
if (i.byteValue() > 0) {
// print

}
}

} Copy and paste?
Not if you have taken CS2030!

27

Write only one version.
Accept List<Integer>,

List<Double>, List<Long>, etc.

28

Question 12

void printNumber(List<Number> list) {
for (Number i : list) {
if (i.byteValue() > 0) {
// print

}
}

} No. Can only accept List<Number>,
not List<Integer>, etc.

29

Question 12

void printNumber(List<?> list) {
for (Object i : list) {
if (i.byteValue() > 0) {
// print

}
}

} No. Too general. Cannot call
byteValue()

30

Question 12

void print (List<? extends Number> list)
{
for (Number i : list) {
if (i.byteValue() > 0) {
// print

}
}

}

31

Question 12

void print (List<T extends Number> list)
{
for (T i : list) {
if (i.byteValue() > 0) {
// print

}
}

} Close. What is T? <T extends
Number> won’t compile

32

Question 12

<T extends Number> void print (List<T> list)
{
for (T i : list) {
if (i.byteValue() > 0) {
// print

}
}

}

33

What’s the diff between
List<?> and List<T>?

34

List<?>
List of something (but I don’t know
what). Can only read Object from it.
Can’t add anything (since I don’t
know what is stored)

35

List<T>
List of some type T, to be
determined by the argument passed
in. Can read T from it. Can add T to
it (what ever T is).

36

Question 13

Heap & Stack

37

class Vector2D {

private double x;
private double y;

Vector2D(double x, double y) {
this.x = x;
this.y = y;

}

void add(Vector2D v) {
this.x += v.x;
this.y += v.y;
// line A

}
}

38

public static void main(String[] args) {
// no argument being passed in

}

args

main

String[]An array
of size 0

Showing null is also ok. But convention for
JVM is to have 0-length String array.

39

public static void main(String[] args) {
Vector2d v1 = new Vector2D(1, 1);

}

args

v1x: 1
y: 1

main

String[]An array
of size 0

40

public static void main(String[] args) {
Vector2D v1 = new Vector2D(1, 1);
Vector2D v2 = new Vector2D(2, 2);

}

args

v1x: 1
y: 1

x: 2
y: 2

v2

main

String[]An array
of size 0

41

public static void main(String[] args) {
Vector2D v1 = new Vector2D(1, 1);
Vector2D v2 = new Vector2D(2, 2);
v1.add(v2);

}

args

v1x: 1
y: 1

x: 2
y: 2

v2

main

String[]An array
of size 0

42

void add(Vector2D v) {

args

v1x: 1
y: 1

x: 2
y: 2

v2

main

this

v
add

String[]An array
of size 0

43

void add(Vector2D v) {
this.x += v.x;
this.y += v.y;

}

args

v1x: 3
y: 3

x: 2
y: 2

v2

main

this

v
add

String[]An array
of size 0

44

args

v1x: 3
y: 3

x: 2
y: 2

v2

main

this

v
add

String[]An array
of size 0

