
Midterm Assessment CS2030 AY17/18 Sem 2

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING
MIDTERM ASSESSMENT FOR

Semester 2 AY2017/2018

CS2030 Programming Methodology II

March 2018 Time Allowed 90 Minutes

INSTRUCTIONS TO CANDIDATES
1. This assessment paper contains 13 questions and comprises 12 printed pages, including this page.

2. A 4-page answer sheet is also given. Write all your answers in the answer sheet. Submit your answer
sheet at the end of the assessment.

3. The total marks for this assessment is 50. Answer ALL questions.

4. This is an OPEN BOOK assessment.

5. All questions in this assessment paper use Java 8 unless specified otherwise.

6. State any additional assumption that you make.

Midterm Assessment CS2030 AY17/18 Sem 2

Part I
Multiple Choice Questions (24 points)

• For each of the questions below, select the most appropriate answer andwrite your answer in the
corresponding answer box on the answer sheet. Each question is worth 3 points.

• If multiple answers are equally appropriate, pick one and write the chosen answer in the answer
box. Do NOT write more than one answers in the answer box.

• If none of the answers are appropriate, write X in the answer box.

1. (3 points) Which of the following statements about inheritance in Java is FALSE?
A. We can use the extends keyword to specify inheritance
B. A class can extends from at most one other class
C. A class declared as final cannot be inherited
D. A method declared as final cannot be overridden
E. A field declared as final cannot be accessed by the subclass

Write X in the answer box if none of the statements above is false.

Solution: E. A final field cannot be modified after initialization, whether it can be accessed or
not, depends on its access modifier.

Page 2

Midterm Assessment CS2030 AY17/18 Sem 2

2. (3 points) Recall that we can override the method equals in the class Point (as defined in CS2030)
so that two Point objects are equal if they have the same x and y coordinates.
Overriding equalsmay ormay not violate the Liskov Substitution Principle (LSP). It depends onwhat
the specified properties of equals in the class Object are.
Which of the following property of equals, if specified, would cause Point to violate the LSP?
For two variables of type Object, o1 and o2, o1.equals(o2) is true if and only if

(i) o1 == o2

(ii) o2.equals(o1) is also true
(iii) o1.equals(o3) implies o3.equals(o2) for another variable o3.

A. (i) only
B. (ii) only
C. (i) and (ii) only
D. (ii) and (iii) only
E. (i), (ii), and (iii)

Write X in the answer box if none of the combination above is correct.

Solution: A. The equalsmethod for Point does not satify (i). So if (i) is specified as a property
of equals, Point would violate LSP.

Page 3

Midterm Assessment CS2030 AY17/18 Sem 2

3. (3 points) Consider the definition of I, J, A, and B below. In order for B to be a concrete (non-abstract)
class, what methods should B implements?

interface I {
void f();

}

interface J extends I {
void g();

}

abstract class A implements J {
public void g(int x) {

return;
}

abstract public void h();
}

class B extends A {
:

}

A. h only
B. f and h only
C. f and g only
D. g and h only
E. f, g and h

Write X in the answer box if none of the combinations above is correct.

Solution: E. f and g should be obvious. There are two methods named g but their signature is
different. So, still need to override g.

Page 4

Midterm Assessment CS2030 AY17/18 Sem 2

4. (3 points) Consider the definition of classes A, B, and C below.

class A {
void f(int x) {
System.out.println("A");

}
}

class B extends A {
void f(int x) {

System.out.println("B");
}

}

class C extends A {
void f(String x) {

System.out.println("C");
}

}

Which of the following declaration and initialization of variable x would cause x.f(1) to print the
string “A”?

(i) A x = new B();

(ii) A x = new C();

(iii) B x = new B();

(iv) C x = new C();

A. (ii) only
B. (ii) and (iv) only
C. (i) and (iii) only
D. (i), (ii), and (iii) only
E. (ii), (iii), and (iv) only

Write X in the answer box if none of the combinations above is correct.

Solution: B. f in B overrides f in A; f in C does not. Which method is invoked depends on the
type of the object being reference (new XX()) not the type of teh variable (YY x). To print “A”, the
object referenced must be of type A or C. Hence the answer is B.

Page 5

Midterm Assessment CS2030 AY17/18 Sem 2

5. (3 points) Consider the following class Out which contains an inner class In and a local class Local

class Out {
int x;

class In {
int y;

}

void foo(int z) {
x = 1; // (A)
z = 1; // (B)
class Local extends In {
void bar() {
int w;
w = x; // (C)
w = y; // (D)
w = z; // (E)

}
}

}
}

Which of the following statement about the five statements labelled (A)-(E) above is FALSE:
A. Statement (A) causes a compilation error, as Java does not allow the value of x to be changed

inside the method foo if x is captured by Local.
B. Statement (B) causes a compilation error, as Java does not allow the value of z to be changed

inside the method foo if z is captured by Local.
C. Statement (C) compiles without error, as the method bar can access the field x.
D. Statement (D) compiles without error, as the method bar can access the field y
E. Statement (E) causes a compilation error, as Java does not allow variable capture of z, which

is neither final or effectively final.
Write X in the answer box if none of the statements above is false.

Solution: A. x is not a local variable, so accessing x from within Local is OK.

Page 6

Midterm Assessment CS2030 AY17/18 Sem 2

6. (3 points) Suppose we have three types S, T , and U , with the following subtype relationship

U <: T <: S

LetA(X) be a complex type that depends on typeX .
Which of the following statement is FALSE:

A. Assigning a variable of typeU to a variable of type S is a form of widening type conversion.
B. Assigning a variable of type S to a variable of type T requires type casting in Java.
C. We can pass a variable of type S to a method expecting type T as argument without type

casting.
D. Passing a variable of type T to a method expecting an argument of type S will never raise a

runtime ClassCastException.
E. IfA(T) <: A(S), then we say thatA is covariant

Write X in the answer box if none of the statements above is false.

Solution: C. Passing S to T is a narrowing conversion, so type casting is needed.

Page 7

Midterm Assessment CS2030 AY17/18 Sem 2

7. (3 points) Suppose we have a generic class with two type parameters:

class Pair<T, U> {
T first;
U second;

}

Which of the following code will lead to a compilation error?

(i) Pair<String, String> p = new Pair<>();

(ii) Pair<int, int> p = new Pair<>();

(iii) Pair<> p = new Pair<Object, Object>();

(iv) Pair<?, ?> p = new Pair<String, Object>();

A. (ii) only
B. (i) and (iv) only
C. (ii) and (iii) only
D. (i), (iii), and (iv) only
E. (ii), (iii), and (iv) only

Write X in the answer box if none of the combinations above is correct.

Solution: C. (ii) won’t work since it uses primitive types. (iii) won’t work since <> operator can
be used only when instantiate a generic type, not as a type.

Page 8

Midterm Assessment CS2030 AY17/18 Sem 2

8. (3 points) Consider the code below. InterruptedException is a subclass of Exception.

class Inception {
public static void main(String args[]) {
van();

}

static void van() {
try {
System.out.println("van");
hotel();

} catch (Exception e) {
System.out.println("exception (van)");

}
}

static void hotel() throws InterruptedException {
try {
System.out.println("hotel");
snowFortress();

} catch (Exception e) {
System.out.println("exception (hotel)");

}
}

static void snowFortress() throws InterruptedException {
System.out.println("snow fortress");
limbo();

}

static void limbo() throws InterruptedException {
throw new InterruptedException();

}
}

Which of the following string will NOT be printed when we invoke the main class Inception?
A. van
B. hotel
C. snow fortress

D. exception (van)

E. exception (hotel)

Write X in the answer box if every string above is printed.

Solution: D.

Page 9

Midterm Assessment CS2030 AY17/18 Sem 2

Part II

Short Questions (24 points)
Answer all questions in the space provided on the answer sheet. Be succinct and write neatly.

9. (4 points) Modeling
Suppose you want to model the following scenario in an object-oriented program.
A module has multiple assessments. There are three types of assessments: lab assignment, test, and
project, each to be graded in a different way.
(a) (3 points) List down the name of the five classes, and the relationship (either IS-A or HAS-A)

between them.
(b) (1 point) Identify an opportunity to use polymorphim in the scenario above.
Note: you do not have to write any Java code to answer this question.

Solution: Module, Assessment, Lab, Test, Project. Module HAS-A Assessment. Each of Lab, Test,
Project IS-A Assessment. The method grade in Assessment can be overriden by individual sub-
classes – polymorphism can be used here.
This should be quite straightforward. Some common mistakes include introducing new classes
not mentioned in the scenario and missed out the more obvious classes. (e.g., Grade, GradeBook,
etc).
Some students also wrote the IS-A relationship in the wrong direction (Assessment IS-A Lab).
Some students give vague answerswhen asked to identify the opportunity for polymorphism (e.g.,
inheritance is an opportunity for polymorphism).

Page 10

Midterm Assessment CS2030 AY17/18 Sem 2

10. (3 points) Hash Code.
Recall that whenever we override the method equals() from the class Object, we must override
the method hashCode() as well. It is required that two objects x and y satify the following property
P :
if x.equals(y), then x.hashCode() == y.hashCode()

Someone presented to you the following implementation of hashCode() for the class A. The other
parts of class A are omitted (including implementation of equals()).

class A {
:

@Override
int hashCode() {
return 8888;

}
}

(a) (1 point) Does the implementation of hashCode() above satisfy property P ?
(b) (2 points) The implementation of hashCode() above is, however, considered a bad practice.

Why?

Solution:
(a) Yes.

(b) (i) All elements will be hashed to the same bucket in HashSet and HashMap, so searching
and retriving will be inefficient as we have to search through all elements everytime. (ii) We
cannot use hashCode() to filter out two objects that are different in equals.
If you explain either one of the above, you get 2 marks.
If youmention something along the line, but is vague (e.g., “cause some troublewithHashSet”,
“voilates the expectation of hashing”), you get 1 mark.
Many students assume that if hashCode() returns the same value, implies that equals()
returns true. Answers that say this or “we can only have one item in HashSet”, “HashMap
will stop working”, “every instance of A would be equal”, etc. will not get any marks.
Another common wrong answer is that the new hashCode() violates the Liskov Substitu-
tion Principle (LSP). To say that something violates LSP, we must be clear about what is the
desirable property of hashCode. The only property is P , which Part (a) already establishes
that it is not violated.
Another commonmisconception is that different objects of the same classmust give a differ-
ent hash code. This is not true. Since hashCode returns an int, there are only 232 possible
hash code. Take strings for instance, there are many many more stirngs than 232. So some
strings must give us the same hash code. A concrete example: Arrays.hashCode. Both {0,
1} and {1, -30} gives the same hash code.

Page 11

Midterm Assessment CS2030 AY17/18 Sem 2

11. (8 points) Method Overriding.
During the lectures, we have seen that, if we have two methods with the same method signature,
one in the superclass and the other in a subclass, then the method in the subclass will override the
method in the superclass. We, however, did not saymuch about the return type of the overridden and
the overriding methods. We will explore more about that in this question.
Let’s construct a simple example. Suppose we have two classes, class A and class B inherits from A.
Both classes A and B define a method A copy(), as seen below, that returns a copy of the object.

class A {
int x;

A(int x) {
this.x = x;

}

public A copy() {
return new A(x);

}
}

class B extends A {
int y;

B(int x, int y) {
super(x);
this.y = y;

}

@Override
public A copy() { // Line 22
return new B(x, y);

}
}

(a) (2 points) Why does the following code gives a compilation error? Fix the code below so that the
compilation error goes away.
B b1 = new B(1, 2);
B b2 = b1.copy();

Solution: The return type of b1.copy() is A. Assigning the return value to b2 is a narrowing
conversion and needs type casting. B b2 = (B) b1.copy();

(b) (2 points) Which version of copy() will the line a1.copy() below invoke? The one in class A,
or in B?
A a1 = new B(1, 2);
A a2 = a1.copy();

Page 12

Midterm Assessment CS2030 AY17/18 Sem 2

Solution: B

(c) (4 points) Suppose we change Line 22 above, so that the return type of method copy() is B in-
stead of A. Java compiler does not give any compilation error, and allows copy() in class B to
override copy() in class A. Explain why it is safe for Java to allow this.

Solution: Existing code that has beenwritten to invoke A’s copywould still work if the code
invokes B’s copy instead after B inherits from A.
The following answers are insufficient / wrong.

• B is subtype of A so it is OK. This does not explain in the context of the return type in
a overriding method. For instance, Java does not allow foo(B x) to override foo(A
x). But it is close since subtyping implies that code written expecting objects of type A
can be used with objects of type B. (2 marks) However, if you elaborated on subtyping
of B from A to any of the following, then you are not applying the concept of subtyping
correctly to answer this question.

• B’s copy() returns an object of type B, so it is safe to change the return type to B. This
does not answer the question, which is why Java allows overriding (notwhy Java allows
the return type to be B, which is rather obvious). (0 marks)

• It does not violate LSP.B’scopy still returns a copy of the object. This has to dowith the
semantic of the program. Java’s compiler does not check for the semantic and violation
of LSP. (0 marks).

• There is no ambiguity to which version of copy will be invoked; Or, the return type
is not part of a method signature. This does not explain why Java does not allow, say,
int copy() B to override A copy() in A. (0 marks)

• Assigning B to A is a widening conversion so it is OK. Again, this does not explain why
Java allows overriding. (0 marks).

Page 13

Midterm Assessment CS2030 AY17/18 Sem 2

12. (4 points) Type.
You are shown the implementation of a class with the following two methods.

void printPositiveBytesFromIntegers(List<Integer> list) {
for (Integer i : list) {

if (i.byteValue() > 0) {
System.out.println(i.byteValue());

}
}

}

void printPositiveBytesFromLong(List<Long> list) {
for (Long i : list) {

if (i.byteValue() > 0) {
System.out.println(i.byteValue());

}
}

}

The methods go through, a list of Integer objects and a list of Long objects, round or truncate them
to a value of type byte, and print out the value if it is positive. You are asked to copy-and-paste the
methods given and change them to produce methods that perform the same action but on a list of
other types. One for a list of Double objects, one for a list of Short objects, one for a list of Float
objects, etc.
You recall the abstraction principle from CS2030, and you know that copying-and-pasting the code
multiple times is not the best way to do this. You look up the Java API, and found that:

• Integer, Long, Double, Short, and Float are all subclasses of the abstract class Number.
• byteValue() is a non-abstract method defined in the class Number and it does exactly that the
code above intended it to do.

With this information, and with what you learn about generic types, you are now ready to write only
ONE method to replace the five methods that would have been produced if you naively replicate the
methods, one for each type. Your method should be able to take in a list of type List<Integer>,
List<Long>, List<Double>, List<Short>, or List<Float> as argument. In fact, your method is
so general that a list of any subtype of Number can be passed in as argument.
Write this method in the space given on the answer sheet.

Page 14

Midterm Assessment CS2030 AY17/18 Sem 2

Solution:

void printPositiveBytes(List<? extends Number> list) { // Line A
for (Number i : list) { // Line B
if (i.byteValue() > 0) {
System.out.println(i.byteValue());

}
}

}

<T extends Number> void printPositiveBytess(List<T> list) { // Line A
for (Number i : list) { // Line B
if (i.byteValue() > 0) {
System.out.println(i.byteValue());

}
}

}

You get 2 marks for choosing the correct type for list in Line A and 2 marks for the correct type
of i in Line B.
Some common mistakes:

• Using T without <T> to make the method generic;

• Mix the use of T and ?;

• Use List<Number> as the type for list;

• Use Object, ?, or <? extends Number> as the type for i.

Page 15

Midterm Assessment CS2030 AY17/18 Sem 2

13. (5 points) Heap and Stack.
Consider the following definition of a Vector2D class:

class Vector2D {
private double x;
private double y;

Vector2D(double x, double y) {
this.x = x;
this.y = y;

}

void add(Vector2D v) {
this.x += v.x;
this.y += v.y;
// line A

}
}

class Main {
public static void main(String[] args) {
Vector2D v1 = new Vector2D(1, 1);
Vector2D v2 = new Vector2D(2, 2);
v1.add(v2);

}
}

We execute the Main class without any command line argument. Show the content on the stack and
the heap when the execution reaches the line labelled A above. Label your variables and the values
they hold clearly. You can use arrows to indicate object references. Draw boxes around the stack
frames of the methods main and add and label them.

Page 16

Midterm Assessment CS2030 AY17/18 Sem 2

Solution:

args

v1

x: 3
y: 3

x: 2
y: 2

v2

main

this

v
add

String[]An array
of size 0

Common mistakes include:

• Forgetting the args is a method parameter to main so should be allocated on stack. Java’s
convention is that args points to an empty array, but we are fine with args pointing to
null too.

• Did not update the value of v1 to (3, 3).

• Give the wrong order of stack frame.

END OF PAPER

Page 17

Midterm Assessment CS2030 AY17/18 Sem 2

This page is intentionally left blank.

Page 18

