CS2100 Computer Organization AY2023/24 Semester 2
 Assignment 1 [with ANSWER]

1. Tertiary (Base-3) Number System (Total: 8 marks)

(a) Tertiary to Decimal Conversion

You are given this unsigned tertiary (base-3) value in a tertiary number system with 8 digits for the integer part and 3 digits for the fraction part: $N_{3}=21012202.111_{3}$.
Convert N_{3} to its decimal equivalent, correct to 4 decimal places.
Answer and Explanation: Multiply each digit by 3 raised to its position power:

$$
\left(2 \times 3^{7}\right)+\left(1 \times 3^{6}\right)+\left(0 \times 3^{5}\right)+\left(1 \times 3^{4}\right)+\left(2 \times 3^{3}\right)+\left(2 \times 3^{2}\right)+\left(0 \times 3^{1}\right)+\left(2 \times 3^{0}\right)+\left(1 \times 3^{-1}\right)+\left(1 \times 3^{-2}\right)+\left(1 \times 3^{-3}\right)
$$

Let's calculate this:
$(2 \times 2187)+(1 \times 729)+(0 \times 243)+(1 \times 81)+(2 \times 27)+(2 \times 9)+(0 \times 3)+(2 \times 1)+(1 \times 0.33333)+(1 \times 0.11111)+$ (1x0.03704)
$=4374+729+0+81+54+18+0+2+0.33333+0.11111+0.03704$
=5258.48148
$=5258.4815$
Thus, the decimal equivalent of 21012202.111_{3} is $\mathbf{5 2 5 8 . 4 8 1 5}{ }_{10}$
(b) Conversion to binary

Convert the tertiary number $N_{3}=02210001.121_{3}$ to its binary equivalent, correct to 4 binary places.

Answer and Explanation: First, convert 02210001.121 ${ }_{3}$ to decimal, following the process described in part (a), and then convert that decimal to binary.

```
(0\times3}\mp@subsup{}{}{7})+(2\times\mp@subsup{3}{}{6})+(2\times\mp@subsup{3}{}{5})+(1\times\mp@subsup{3}{}{4})+(0\times\mp@subsup{3}{}{3})+(0\times\mp@subsup{3}{}{2})+(0\times\mp@subsup{3}{}{1})+(1\times\mp@subsup{3}{}{0})+((1\times\mp@subsup{3}{}{-1})+(2\times\mp@subsup{3}{}{-2})+(1\times\mp@subsup{3}{}{-3}
=0+(2\times729)+(2\times243)+81+0+0+0+1+0.33333+(2\times 0.11111)+0.03703
=2026.5925810
```

Converting 2026.59258 ${ }_{10}$ to Binary:
2026 in binary is calculated by repeatedly dividing by 2 and noting the remainders:
11111101010_{2}
0.59258 in binary is calculated by repeatedly multiplying by 2 and noting the carry: 0.100101_{2}.

Rounding to 4 binary places, we have 0.1001_{2}.
(If we use 0.5926 instead, we will still get 0.1001_{2}.)
Thus, the binary equivalent of 02210001.121_{3} is $\mathbf{1 1 1 1 1 1 0 1 0 1 0 . 1 0 0 1}_{2}$
(c) Range of Representable Numbers

Determine the range of numbers representable in a 4-digit tertiary number system in unsigned format.

Answer and Explanation: The smallest number is $\mathbf{0 0 0 0}_{3}$ (0 in decimal), and the largest is 2222_{3} (80 in decimal), offering a range of 0 to 80 . In total, a 4 -digit, base- 3 number system can represent $3^{4}=81$ numbers.

2. Base-4 Number System (Total: 4 marks)

(a) 3's complement and 4's complement:

Calculate the 3's complement and 4's complement for a given 8-digit base-4 number on signed numbers, $N_{4}=32103203$.

Answers:
3's Complement:

- Subtract each digit from 3 to get the 3's complement: 32103203 -> 01230130
- Thus, the 3 's complement of $\mathrm{N}_{4}=32103203$ is 01230130

4's Complement:

- First, subtract each digit from 3 to get the 3's complement: 32103203 -> 01230130
- Then, add 1 to the entire number in a base-4 manner: $01230130+1=01230131$
- Thus, the 4 's complement of $\mathrm{N}_{4}=32103203$ is 01230131
(b) Range of Representable Numbers

Determine the range of numbers representable in a 4-digit base-4 number system in (i) unsigned and (ii) signed (4's complement) format.

Answers:

Unsigned format: In an unsigned format, each digit can represent values from 0 to 3. For a 4digit number in base-4, the range is straightforward:

- Minimum Value: The smallest number is represented by 0000_{4}, which is 0 in decimal.
- Maximum Value: The largest number is 3333_{4}, where each digit is the maximum value (3) in base-4. To convert 3333_{4} to decimal, we calculate $3 \times 4^{3}+3 \times 4^{2}+3 \times 4^{1}+3 \times 4^{0}=255$ in decimal.
So, the range of unsigned 4-digit base-4 numbers is from $\mathbf{0}$ to $\mathbf{2 5 5}$ in decimal.

Signed (4's complement) format:

Positive values are represented by 0000_{45} to 1333_{45}. Negative values are represented by 20004s to 33334s.

Largest value (most positive): $1333_{4 \mathrm{~s}}=\left(1 \times 4^{3}\right)+\left(3 \times 4^{2}\right)+\left(3 \times 4^{1}\right)+\left(3 \times 4^{0}\right)=64+(3 \times 16)+(3 \times 4)+3=$ 127.

Smallest value (most negative): $2000_{4 \mathrm{~s}}=-\left(2 \times 4^{3}\right)=-128$.
So, the range of signed 4-digit signed 4's complement format is from -128 to 127.

3. Excess-N Number Representation (Total: 6 marks)

(a) Convert the decimal number 25 to 8 -bit excess-128 form. Explain the steps involved in the conversion process.
(2 marks)

Answer:

- Step 1: Start with the decimal number 25.
- Step 2: Add the bias (128) to the number: 25+128=153.
- Step 3: Convert 153 to binary: 153=10011001.
- The excess-128 binary representation of 25 is $10011001_{\text {Excess-128 }}$.
(b) Given an 8 -bit binary number in excess-128 format, $10010110_{\text {Excess-128, }}$, convert it back to its original decimal value. Describe the process used for conversion.
(2 marks)

Answer:

- Step 1: Begin with the binary number 10010110.
- Step 2: Convert it to decimal: $10010110=150$.
- Step 3: Subtract the bias (128) from the decimal representation: 150-128=22.
- The original decimal number before applying excess-128 encoding was $\mathbf{2 2}_{10}$.
(c) Range of Representable Numbers: Determine the range of decimal numbers that can be represented in an 8 -bit excess- 128 system. Explain how the excess-N system affects the representable range of numbers compared to the standard unsigned binary representation.

Answer:

- In an 8-bit system, the maximum binary number is 11111111 , which is 255 in decimal.
- When using excess-128, the bias is subtracted from the binary representation, meaning the range of representable numbers goes from $0-128=-128$ to $255-128=127$.
- The excess- 128 system allows representation of both positive and negative numbers in an 8 -bit system, ranging from $\mathbf{- 1 2 8}$ to $\mathbf{1 2 7}$, unlike the standard unsigned binary representation, which ranges from 0 to 255 .

4. IEEE 754 Format (Total: 6 marks)

Consider the single-precision IEEE 754 format for this question.
(a) Decimal to IEEE 754 Conversion: Convert the decimal number -118.625 to its IEEE 754 singleprecision floating-point representation. Write your answer in hexadecimal. Outline the steps involved, including normalization, binary conversion, exponent adjustment, and final encoding.

Answer:

1. Sign: Since the number is negative, the sign bit is 1 .
2. Normalization: Convert -118.625 to binary: -1110110.101 .
3. Normalization (continued): Normalize the binary number to 1.110110101×2^{6}
4. Exponent: The exponent is 6 , and after adjusting with the bias (127 for single-precision), we get 133, which is 10000101.
5. Mantissa: The mantissa is the normalized value without the leading 1, filled to 23 bits: 11011010100000000000000.
6. Final Encoding: Combine the sign, exponent, and mantissa: 11000010111011010100000000000000.
7. Convert to hexadecimal: 1100/0010/1110/1101/0100/0000/0000/0000 = C2ED4000 ${ }_{16}$.
(b) IEEE 754 to Decimal Conversion: Given the IEEE 754 single-precision floating-point number represented by the binary string 11000010111010000000000000000000 , convert this binary string back into its decimal form. Describe the decoding process, including how to interpret the sign, exponent, and mantissa (fraction) fields.

Answer:

1. Split into sign-exponent-mantissa: 11000010111010000000000000000000
2. Sign: The sign bit is 1 , indicating a negative number.
3. Exponent: 10000101 is 133 . Subtracting the bias (127) gives 6 .
4. Mantissa: 11010000000000000000000. Including the implicit leading 1 gives 1.1101 .
5. Binary to Decimal: Convert $-1.1101_{2} \times 2^{6}$ to decimal: $-1.1101_{2} \times 2^{6}=-1110100_{2}=-116$.

5. MIPS (Total: 17 marks)

Study the MIPS program below. Mem[x] and Mem[y] are non-negative integers less than 10000. Assume that registers 4-15 are set to 0 prior to the execution of this program.

```
1 main:
        la $8, x
        la $9, y
        lw $4, 0($8)
        lw $5,0($9)
        move $11, $0
        beq $5, $0, exit
    loop:
        andi $10, $5, 1
        neg $10, $10
        and $10, $10, $4
        add $11, $10, $11
        srl $5, $5, 1
        sll $4, $4, 1
        bgei $5, 1, loop
    exit:
```

(a) There are four pseudo-instructions present in this MIPS program:

- la (load address, see lab 3)
- move (move value of one register to another)
- bgei (branch if greater than or equal to)
- neg (negate, in 2 s complement).

Provide equivalent MIPS instruction(s) for the following pseudo-instructions:

- move \$dst, \$src (1 instruction)
- bgei \$src, imm, label (2 consecutive instructions)
- neg \$dst, \$src (1 instruction)

Assume that there will be no overflow/underflow. Your equivalent MIPS instruction(s) should contain exactly the number of instructions specified. Use \$t0 if you need a temporary register, and use \$zero for the zero register.
(3 marks)

Answers:

- move \$dst, \$src
add \$dst, \$src, \$zero OR add \$dst, \$zero, \$src OR addi \$dst, \$src, 0
OR or \$dst, \$src, \$src OR and \$dst, \$src, \$src
OR or \$dst, \$src, \$zero
- bgei \$src, imm, label
slti \$te, \$src, imm
beq \$t0, \$zero, label
- neg \$dst, \$src
sub \$dst, \$zero, \$src
(b) If Mem[x] = 2100 and Mem[y] = 24 at the start of the program, what is the value of register \$11 at the end of the program? Write your answer in hexadecimal.

Answer: 0xC4EO
As this program calculates the product between Mem[x] and Mem[y], we should get $50400_{10}=$ $\mathrm{C}_{\mathrm{EEO}}^{16}$.
(c) In one sentence, explain the relationship between Mem[x], Mem[y], and the value of register $\$ 11$ at the end of the program.
(2 marks)
Answer: The value in the $\$ 11$ register is the product of Mem[x] and Mem[y].
(d) Given $\operatorname{Mem}[x]=2024$ and $\operatorname{Mem}[y]=2100$ at the start of the program, determine the total number of times the beq/bgei instructions result in a branch during the execution of the program.
(2 marks)

Answer: 11

The beq instruction only branches if $\mathrm{y}=0$, which is not applicable in our case.
Note that the bgei instruction branches when $\$ 5>0$. The contents in register $\$ 5$ gets rightshifted (srl) once every loop. Therefore, the number of branches is one less than the number of digits in the binary representation of y, i.e. $\left(\log _{2}(y)-1\right)$ times. Since $2100_{10}=1000001101002$ which has 12 digits, this instruction branches 11 times.
Another way to get this answer is to consider the value of $\$ 5$ every time the bgei instruction is encountered. In the first loop, $\$ 5=1050$; in the second loop $\$ 5=525$; in the third loop $\$ 5=$ 262; and so on, counting the number of loops until $\$ 5=0$ and the bgei does not branch.
(e) What is the minimum and maximum number of instructions which could be executed in this program? Assume that any of the pseudo-instructions used counts as only one MIPS instruction.
(2 marks)
Answer: minimum 6, maximum 104
The minimum number of instructions executed would happen when $y=0$, which results in the early branch to the exit label resulting in 6 instructions.
The maximum number of instructions executed would happen when the binary representation of y has the greatest number of digits. Since $y<10000$, the largest possible value for y is 10 01110000 11112, which would result in 14 iterations of the loop. This would result in $6+(14 \mathrm{x}$ 7) $=104$ instructions being executed.
(f) Encode the instructions on lines 4, 7, 10, 12, 13, and 14 in hexadecimal. Assume that each pseudo-instruction used above counts as only one MIPS instruction.
(6 marks)
Answer:

lw $\$ 4,0(\$ 8)$	$\Rightarrow 0 \times 8 \mathrm{D} 040000$	
beq $\$ 5, \$ 0$,	exit	\Rightarrow 0x10A00007
andi $\$ 10, \$ 5,1$	\Rightarrow 0x30AA0001	
and $\$ 10, \$ 10, \$ 4$	$\Rightarrow 0 \times 01445024$	
add $\$ 11, \$ 10, \$ 11$	$\Rightarrow 0 \times 014 B 5820$	
srl $\$ 5, \$ 5,1$	\Rightarrow 0x00052842	

Explanation:

```
    rt imm(rs)
lw $4, 0($8) => 0x8D040000
opcode = 2316 = 0b10 0011
rs = $8 = 0b01000
rt = $4 = 0b00100
imm = 0 = 0b0000 0000 0000 0000
0b1000 1101 0000 0100 0000 0000 0000 0000 = 0x8D040000
```

```
    rs rt imm
beq $5, $0, exit => 0x10A00007
opcode = 0x04 = 0b00 0100
rs = $5 = 0b00101
rt = $0 = 0b00000
imm = 7 = 0b0000 0000 0000 0111
0b0001 0000 1010 0000 0000 0000 0000 0111 = 0x10A00007
```

 rt rs imm
 andi $\$ 10, \$ 5,1 \Rightarrow 0 x 30 A A 0001$
opcode $=0 x 0 C=0 b 001100$
$r s=\$ 5=0 b 00101$
$r t=\$ 10=0 \mathrm{~b} 01010$
imm = 0b0000 000000000001
0b0011 $0000101010100000000000000001=0 x 30 \mathrm{AA} 0001$

```
    rd rs rt
and $10, $10, $4 => 0x01445024
opcode = 0 = 0b00 0000
funct = 0x24 = 0b10 0100
rs = rd = $10 = 0b01010
rt = $4 = 0b00100
shamt = 0b00000
0b0000 0001 0100 0100 0101 0000 0010 0100 = 0x01445024
    opcode rs rt rd shamt funct
        rd rs rt
add $11, $10, $11 => 0x014B5820
opcode = 0 = 0b00 0000
funct = 0x20=0b10 0000
rt = rd = $11 = 0b01011
rs = $10 = 0b01010
shamt = 0b00000
0b0000 0001 0100 1011 0101 1000 0010 0000 = 0x014B5820
    opcode rs rt rd shamt funct
        rt rd imm
srl $5, $5, 1 => 0x00052842
opcode = 0 = 0b00 0000
funct = 0x02 = 0b00 0010
rt = rd = $5 = 0b00101
rs = 0 for shift instructions
shamt = 0b00001
0b0000 0000 0000 0101 0010 1000 0100 0010=0x00052842
    opcode rs rt rd shamt funct
```

