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CS2100 Computer Organization 
AY2023/24 Semester 2 

Assignment 1 [with ANSWER] 
 
1. Tertiary (Base-3) Number System (Total: 8 marks) 
(a) Tertiary to Decimal Conversion  (3 marks) 

You are given this unsigned tertiary (base-3) value in a tertiary number system with 8 digits 
for the integer part and 3 digits for the fraction part: N3=21012202.1113. 
Convert N3 to its decimal equivalent, correct to 4 decimal places. 

Answer and Explanation: Multiply each digit by 3 raised to its position power: 
(2×37)+(1×36)+(0×35)+(1×34)+(2×33)+(2×32)+(0×31)+(2×30)+(1× 3-1) +(1× 3-2) +(1× 3-3) 

Let's calculate this: 
(2×2187)+(1×729)+(0×243)+(1×81)+(2×27)+(2×9)+(0×3)+(2×1)+(1x0.33333)+(1x0.11111)+ 
(1x0.03704) 
=4374+729+0+81+54+18+0+2+0.33333+0.11111+0.03704 
=5258.48148 
=5258.4815 

Thus, the decimal equivalent of 21012202.1113 is 5258.481510 
 

 (b)  Conversion to binary  (3 marks) 
Convert the tertiary number N3=02210001.1213 to its binary equivalent, correct to 4 binary 
places. 

Answer and Explanation: First, convert 02210001.1213 to decimal, following the process 
described in part (a), and then convert that decimal to binary. 

(0×37)+(2×36)+(2×35)+(1×34)+(0×33)+(0×32)+(0×31)+(1×30)+((1x3-1)+(2x3-2)+(1x3-3) 
=0+(2×729)+(2×243)+81+0+0+0+1+0.33333+(2× 0.11111)+0.03703 
=2026.5925810 

Converting 2026.5925810 to Binary: 
2026 in binary is calculated by repeatedly dividing by 2 and noting the remainders: 
111111010102 
0.59258 in binary is calculated by repeatedly multiplying by 2 and noting the carry: 0.1001012. 
Rounding to 4 binary places, we have 0.10012. 
(If we use 0.5926 instead, we will still get 0.10012.) 

Thus, the binary equivalent of 02210001.1213 is 11111101010.10012 
 
 (c)  Range of Representable Numbers  (2 marks) 

Determine the range of numbers representable in a 4-digit tertiary number system in 
unsigned format. 

Answer and Explanation: The smallest number is 00003 (0 in decimal), and the largest is 22223 
(80 in decimal), offering a range of 0 to 80. In total, a 4-digit, base-3 number system can 
represent 34 = 81 numbers. 
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2. Base-4 Number System (Total: 4 marks) 
(a)  3’s complement and 4’s complement:  (2 marks) 

Calculate the 3's complement and 4's complement for a given 8-digit base-4 number on 
signed numbers, N4=32103203. 

 
Answers: 
3’s Complement: 
• Subtract each digit from 3 to get the 3’s complement: 32103203 -> 01230130 
• Thus, the 3's complement of N4=32103203 is 01230130 

 
4’s Complement: 
• First, subtract each digit from 3 to get the 3’s complement: 32103203 -> 01230130 
• Then, add 1 to the entire number in a base-4 manner: 01230130+1=01230131 
• Thus, the 4's complement of N4=32103203 is 01230131 

 
(b)  Range of Representable Numbers  (2 marks) 

Determine the range of numbers representable in a 4-digit base-4 number system in (i) 
unsigned and (ii) signed (4’s complement) format. 

 
Answers: 
Unsigned format: In an unsigned format, each digit can represent values from 0 to 3. For a 4-
digit number in base-4, the range is straightforward: 
• Minimum Value: The smallest number is represented by 00004, which is 0 in decimal. 
• Maximum Value: The largest number is 33334, where each digit is the maximum value (3) 

in base-4. To convert 33334 to decimal, we calculate 3×43+3×42+3×41+3×40=255 in 
decimal. 

So, the range of unsigned 4-digit base-4 numbers is from 0 to 255 in decimal. 
 

Signed (4’s complement) format: 
Positive values are represented by 00004s to 13334s. Negative values are represented by 
20004s to 33334s. 
 
Largest value (most positive): 13334s = (1×43)+(3×42)+(3×41)+(3×40) = 64+(3×16)+(3×4)+3 = 
127. 
Smallest value (most negative): 20004s = -(2×43) = -128. 
So, the range of signed 4-digit signed 4’s complement format is from –128 to 127. 
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3. Excess-N Number Representation (Total: 6 marks) 
 
(a)  Convert the decimal number 25 to 8-bit excess-128 form. Explain the steps involved in the 

conversion process.  (2 marks) 
 

Answer: 
• Step 1: Start with the decimal number 25. 
• Step 2: Add the bias (128) to the number: 25+128=153. 
• Step 3: Convert 153 to binary: 153=10011001. 
• The excess-128 binary representation of 25 is 10011001Excess-128. 

 
(b)  Given an 8-bit binary number in excess-128 format, 10010110Excess-128, convert it back to its 

original decimal value. Describe the process used for conversion.  (2 marks) 
 

Answer: 
• Step 1: Begin with the binary number 10010110. 
• Step 2: Convert it to decimal: 10010110=150. 
• Step 3: Subtract the bias (128) from the decimal representation: 150−128=22. 
• The original decimal number before applying excess-128 encoding was 2210. 

 
(c)  Range of Representable Numbers: Determine the range of decimal numbers that can be 

represented in an 8-bit excess-128 system. Explain how the excess-N system affects the 
representable range of numbers compared to the standard unsigned binary representation. 
 (2 marks)  
Answer: 

• In an 8-bit system, the maximum binary number is 11111111, which is 255 in decimal. 
• When using excess-128, the bias is subtracted from the binary representation, meaning 

the range of representable numbers goes from 0−128=−128 to 255−128=127. 
• The excess-128 system allows representation of both positive and negative numbers in 

an 8-bit system, ranging from −128 to 127, unlike the standard unsigned binary 
representation, which ranges from 0 to 255. 
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4. IEEE 754 Format (Total: 6 marks) 
 
Consider the single-precision IEEE 754 format for this question. 
(a)  Decimal to IEEE 754 Conversion: Convert the decimal number −118.625 to its IEEE 754 single-

precision floating-point representation. Write your answer in hexadecimal. Outline the steps 
involved, including normalization, binary conversion, exponent adjustment, and final 
encoding.  (3 marks) 

 
Answer: 
1. Sign: Since the number is negative, the sign bit is 1. 
2. Normalization: Convert −118.625 to binary: −1110110.101. 
3. Normalization (continued): Normalize the binary number to 1.110110101×26  
4. Exponent: The exponent is 6, and after adjusting with the bias (127 for single-precision), 

we get 133, which is 10000101. 
5. Mantissa: The mantissa is the normalized value without the leading 1, filled to 23 bits: 

11011010100000000000000. 
6. Final Encoding: Combine the sign, exponent, and mantissa: 

11000010111011010100000000000000. 
7. Convert to hexadecimal: 1100/0010/1110/1101/0100/0000/0000/0000 = C2ED400016. 

 
 
(b)  IEEE 754 to Decimal Conversion: Given the IEEE 754 single-precision floating-point number 

represented by the binary string 11000010111010000000000000000000, convert this binary 
string back into its decimal form. Describe the decoding process, including how to interpret 
the sign, exponent, and mantissa (fraction) fields. (3 marks) 

 
Answer: 
1. Split into sign-exponent-mantissa: 1   10000101    11010000000000000000000 
2. Sign: The sign bit is 1, indicating a negative number. 
3. Exponent: 10000101 is 133. Subtracting the bias (127) gives 6. 
4. Mantissa: 11010000000000000000000. Including the implicit leading 1 gives 1.1101. 
5. Binary to Decimal: Convert -1.11012 × 26 to decimal: -1.11012 × 26 = -11101002 = -116. 
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5. MIPS (Total: 17 marks) 
Study the MIPS program below. Mem[x] and Mem[y] are non-negative integers less than 10000. 
Assume that registers 4 – 15 are set to 0 prior to the execution of this program. 

 
 
(a)  There are four pseudo-instructions present in this MIPS program:  

• la (load address, see lab 3)  

• move (move value of one register to another) 

• bgei (branch if greater than or equal to)   

• neg (negate, in 2s complement).  
 

Provide equivalent MIPS instruction(s) for the following pseudo-instructions:  
• move $dst, $src (1 instruction) 
• bgei $src, imm, label (2 consecutive instructions) 
• neg $dst, $src (1 instruction) 
 

Assume that there will be no overflow/underflow. Your equivalent MIPS instruction(s) should 
contain exactly the number of instructions specified. Use $t0 if you need a temporary register, 
and use $zero for the zero register.  (3 marks)  
 
Answers: 
• move $dst, $src 

add $dst, $src, $zero OR add $dst, $zero, $src 
OR addi $dst, $src, 0  
OR or $dst, $src, $src OR and $dst, $src, $src  
OR or $dst, $src, $zero 

• bgei $src, imm, label 
slti $t0, $src, imm 
beq  $t0, $zero, label 

• neg $dst, $src 
sub $dst, $zero, $src 

 

1     main: 
2         la    $8, x 
3         la    $9, y 
4         lw    $4, 0($8)   
5         lw    $5, 0($9) 
6         move  $11, $0 
7         beq   $5, $0, exit       
8  
9     loop: 
10        andi  $10, $5, 1   
11        neg   $10, $10 
12        and   $10, $10, $4   
13        add   $11, $10, $11   
14        srl   $5, $5, 1    
15        sll   $4, $4, 1 
16        bgei  $5, 1, loop   
17        
18    exit: 
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(b) If Mem[x] = 2100 and Mem[y] = 24 at the start of the program, what is the value of register $11 
at the end of the program? Write your answer in hexadecimal.  (2 marks)  
 
Answer: 0xC4E0 
As this program calculates the product between Mem[x] and Mem[y], we should get 5040010 = 
C4E016. 

 
(c)  In one sentence, explain the relationship between Mem[x], Mem[y], and the value of register 

$11 at the end of the program.  (2 marks) 
 
Answer: The value in the $11 register is the product of Mem[x] and Mem[y]. 

 
(d)  Given Mem[x] = 2024 and Mem[y] = 2100 at the start of the program, determine the total 

number of times the beq/bgei instructions result in a branch during the execution of the 
program.  (2 marks) 
 
Answer: 11 
The beq instruction only branches if y = 0, which is not applicable in our case. 
Note that the bgei instruction branches when $5 > 0. The contents in register $5 gets right-
shifted (srl) once every loop. Therefore, the number of branches is one less than the number 
of digits in the binary representation of y, i.e. (log2(y) – 1) times. Since 210010 = 1000 0011 01002 

which has 12 digits, this instruction branches 11 times. 
Another way to get this answer is to consider the value of $5 every time the bgei instruction is 
encountered. In the first loop, $5 = 1050; in the second loop $5 = 525; in the third loop $5 = 
262; and so on, counting the number of loops until $5 = 0 and the bgei does not branch. 
 

(e)  What is the minimum and maximum number of instructions which could be executed in this 
program? Assume that any of the pseudo-instructions used counts as only one MIPS 
instruction.  (2 marks) 
 
Answer: minimum 6, maximum 104 
The minimum number of instructions executed would happen when y = 0, which results in the 
early branch to the exit label resulting in 6 instructions.  
The maximum number of instructions executed would happen when the binary representation 
of y has the greatest number of digits. Since y < 10000, the largest possible value for y is 10 
0111 0000 11112, which would result in 14 iterations of the loop. This would result in 6 + (14 x 
7) = 104 instructions being executed.  

 
(f)  Encode the instructions on lines 4, 7, 10, 12, 13, and 14 in hexadecimal. Assume that each 

pseudo-instruction used above counts as only one MIPS instruction.   (6 marks) 
 
Answer: 
lw   $4,  0($8)      => 0x8D040000 

beq  $5,  $0,  exit  => 0x10A00007 

andi $10, $5,  1     => 0x30AA0001 

and  $10, $10, $4    => 0x01445024 
add  $11, $10, $11   => 0x014B5820  
srl  $5,  $5,  1     => 0x00052842 
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Explanation: 
rt imm(rs) 

lw $4, 0($8) => 0x8D040000 

opcode = 2316 = 0b10 0011 

rs = $8 = 0b01000 

rt = $4 = 0b00100 

imm = 0 = 0b0000 0000 0000 0000 

0b1000 1101 0000 0100 0000 0000 0000 0000 = 0x8D040000 

 

      rs  rt  imm 

beq   $5, $0, exit => 0x10A00007 

opcode = 0x04 = 0b00 0100 

rs = $5 = 0b00101 

rt = $0 = 0b00000 

imm = 7 = 0b0000 0000 0000 0111 

0b0001 0000 1010 0000 0000 0000 0000 0111 = 0x10A00007 

 

      rt   rs  imm 

andi  $10, $5, 1     => 0x30AA0001 

opcode = 0x0C = 0b00 1100 

rs = $5 = 0b00101 

rt = $10 = 0b01010 

imm = 0b0000 0000 0000 0001 

0b0011 0000 1010 1010 0000 0000 0000 0001 = 0x30AA0001 

 
      rd   rs   rt 
and   $10, $10, $4 => 0x01445024 
opcode = 0 = 0b00 0000 
funct = 0x24 = 0b10 0100 
rs = rd = $10 = 0b01010 
rt = $4 = 0b00100 
shamt = 0b00000 
0b0000 0001 0100 0100 0101 0000 0010 0100 = 0x01445024 
  opcode rs    rt     rd    shamt funct 
 
      rd   rs   rt 
add   $11, $10, $11 => 0x014B5820  
opcode = 0 = 0b00 0000 
funct = 0x20 = 0b10 0000 
rt = rd = $11 = 0b01011 
rs = $10 = 0b01010 
shamt = 0b00000 
0b0000 0001 0100 1011 0101 1000 0010 0000 = 0x014B5820 
  opcode rs    rt     rd    shamt funct 
 
      rt  rd  imm 
srl   $5, $5, 1    => 0x00052842 
opcode = 0 = 0b00 0000 
funct = 0x02 = 0b00 0010 
rt = rd = $5 = 0b00101 
rs = 0 for shift instructions 
shamt = 0b00001 
0b0000 0000 0000 0101 0010 1000 0100 0010 = 0x00052842 
  opcode rs    rt     rd    shamt funct   

 


