CS2100 Computer Organization

 AY2023/24 Semester 2

 AY2023/24 Semester 2
 Assignment 2
 (Deadline: 18 March 2024, Monday, 1pm)

Instructions

1. There are TEN questions in this assignment, totaling FORTY marks.
2. This assignment is due on Monday, $\mathbf{1 8}$ March 2024, $\mathbf{1 p m}$. The submission folder will be closed at 1:10 pm, after which no submission will be accepted and you will receive ZERO for this assignment.
3. Answer these questions on Canvas \rightarrow Assignments.
4. You should do these assignments on your own. Do not discuss the assignment questions with others.
5. Please post on QnA "Assignments" topic if you have any queries.

Part I: MIPS Datapath (20 marks)

Question 1. (20 marks)
Consider the MIPS Datapath with the initial values of the registers and memory as shown below. Values preceded by $0 x$ are in hexadecimal.

MIPS Registers	
R0 (r0) = 0x00000000	R1 (at) $=0 \times 00002000$
R2 (v0) $=0 \times 00000001$	R3 (v1) $=0 \times 0000000 \mathrm{a}$
R4 (a0) $=0 \times 00000005$	R5 (a1) $=0 \times 7 \mathrm{ffff000}$
R6 (a2) = 0x7ffff004	R7 (a3) $=0 \times 000000 \mathrm{~b} 0$
R8 (t0) $=0 \times 00000001$	R9 (t1) $=0 \times 00000 \mathrm{c} 00$
R10 (t2) $=0 \times 0000 \mathrm{c} 000$	R11 (t3) $=0 x f f f f f f f 0$
R12 (t4) $=0 \times f 0000000$	R13 (t5) $=0 \mathrm{x} 00000 \mathrm{fff}$
R14 (t6) $=0 \times 00006200$	R15 (t7) $=0 \times 00000 \mathrm{e} 00$
R16 (s0) $=0 \times 00300000$	R17 (s1) $=0 \times 00000 \mathrm{c} 00$
R18 (s2) $=0 \times 00040200$	R19 (s3) $=0 \times 00011000$
R20 (s4) $=0 \times 00030200$	R21 (s5) $=0 \times 00000000$
R22 (s6) $=0 \times 00055000$	R23 (s7) $=0 \times 10000000$
R24 (t8) $=0 \times 00000005$	R25 (t9) $=0 \times 0000 \mathrm{~d} 000$
R26 (k0) $=0 \times 00000000$	R27 (k1) $=0 \times 00000000$
R28 (gp) $=0 \times 10008000$	R29 (sp) $=0 \times 7 f f f e f f 4$
R30 (s8) $=0 \times 1000000 \mathrm{f}$	R31 (ra) $=0 \times 00400018$
Address	Memory
0xFFFFFF94	1
0xFFFFFF98	2
0xFFFFFF9C	3
0xFFFFFFA0	4
0xFFFFFFA4	5

The current PC value is $\mathbf{2 5 6}$ and the following instructions are being executed one by one:

```
lw $s3, -100($s5) //instruction 1
add $s6, $s3, $s4 //instruction 2
```

Fill in the values of the fields in the table below. You have to fill column 2 after executing instruction 1 and column 3 after executing instruction 2. For rows marked with ${ }^{*}$, your answers must follow the base given (0 b for binary, $0 x$ for hexadecimal), and you must write all the required digits, or it will be graded as wrong even if the value is correct. You do NOT need to include the prefix Ob or $0 x$ in your answers. For rows without *, the answers are to be in decimal, and you are not to include leading zeroes in your decimal answers.

Fields	Values for Instruction 1	Values for Instruction 2
RegDst		
MemRead		
MemWrite		
ALUcontrol*	0b	Ob
RegWrite		
Instruction[31-26]*	Ob	Ob
Instruction[25-21]*	Ob	Ob
Instruction[20-16]*	Ob	Ob
Instruction[15-0]*	0b	Ob
A*	Ob	Ob
B*	0x	0x
RD1*	0x	0 x
RD2*	0x	0x
ALU Result*	0x	$0 \times$
ALUSrc		
RR1		
RR2		
WR		
WD		
MemToReg		

Part II. Boolean algebra, logic circuits and simplification (20 marks)

Note that in general, unless otherwise stated, complemented literals are not available.
Remember to write • for the AND operation, or mark will be deducted. If you are typing your answers, you may use the full stop (.) for AND and the single quote (') for complement.

Question 2 (4 marks)

The exclusive-or (XOR) binary operation is defined as follows:

$$
x \operatorname{XOR} y=x^{\prime} \cdot y+x \cdot y^{\prime}
$$

The exclusive-nor (XNOR) binary operation is the negation of XOR. Express the exclusive-nor (XNOR) binary operation, x XNOR y, in sum-of-products expression, by completing the derivation below using Boolean algebra and justifying the steps with appropriate laws and theorems of Boolean algebra.

$$
x \text { XNOR } y=(x \text { XOR } y)^{\prime}=\ldots
$$

For ease of typing, you may use the full stop (.) for AND and the single quote (') for complement.

Question 3 (1 mark)

You want to build a logic circuit that performs the NOR operation (i.e. x NOR y) by using only 2-input NAND gates. What is the minimum number of NAND gates required?

Question 4 (2 marks)

You want to build a logic circuit that performs the NOR operation (i.e. x NOR y) by using only 2 -input NAND gates and the fewest number of gates. Draw the circuit, labelling the inputs (x, y) and output (x NOR y) clearly. Complemented literals are not available.

Question 5 (1 mark)

Given the 4 -variable Boolean function $F(A, B, C, D)=$ ПM(2,3,4,9,11,13) \cdot ПX $(6,7,8,12,15)$ where M are the maxterms and X the don't-cares, how many prime implicants are there on the Kmap of F ? You do not need to show your K-map.

Question 6 (1 mark)

Given the 4 -variable Boolean function $F(A, B, C, D)=\Pi M(2,3,4,9,11,13) \cdot \Pi X(6,7,8,12,15)$ where M are the maxterms and X the don't-cares, how many essential prime implicants are there on the K-map of F ? You do not need to show your K-map.

Question 7 (2 marks)

Given the 4 -variable Boolean function $F(A, B, C, D)=$ ПM(2,3,4,9,11,13) \cdot ПX $(6,7,8,12,15)$ where M are the maxterms and X the don't-cares, write out the simplified Product-of-Sums (POS) expression for F. If there are more than one answer, write out all answers.

Question 8 (3 marks)

Given a Boolean function on 8 variables, $Z(A, B, C, D, E, F, G, H)$, write the simplified Sum-of-Products (SOP) expression for each of the following.
(i) $m 123 \cdot m 4$
(ii) $m 123+M 4$
(iii) $m 123 \cdot M 4$

Question 9 (3 marks)

For each of the following, write the minterm numbers in increasing order, separated by comma, without any space.
(i) Given the following functions:

$$
\begin{aligned}
& F(A, B, C)=A+B^{\prime} \cdot C^{\prime} \\
& G(A, B, C)=B+A^{\prime} \cdot C \\
& H(A, B, C)=F(A, B, C) \cdot G(A, B, C)
\end{aligned}
$$

What is $H(A, B, C)$ in Σm notation? That is, $H(A, B, C)=\Sigma m(\ldots)$. Write out the list of minterm numbers in increasing order, separated by comma, without any space.
(Ii) Given the following functions:

$$
\begin{aligned}
& P(A, B, C)=A+B^{\prime} \\
& Q(A, B, C)=\left(A^{\prime}+B\right) \cdot(A+C) \\
& R(A, B, C)=P(A, B, C) \oplus Q(A, B, C) \text { where } \oplus \text { is the XOR operator }
\end{aligned}
$$

What is $R(A, B, C)$ in Σm notation? That is, $R(A, B, C)=\Sigma m(\ldots)$. Write out the list of minterm numbers in increasing order, separated by comma, without any space.
(iii) A circuit counts the number of ' 0 ' bits in an unsigned binary integer $A B C D$ and outputs an unsigned binary integer $X Y Z$. For example, if $A B C D=1010$, then $X Y Z=010$ as $A B C D$ contains two 0 s ; if $A B C D=0100$, then $X Y Z=11$ as $A B C D$ contains three 0 s.

What is $Z(A, B, C, D)$ in Σm notation? That is, $Z(A, B, C, D)=\Sigma m(\ldots)$. Write out the list of minterm numbers in increasing order, separated by comma, without any space.

Question 10 (3 marks)

The following Boolean function $F(a, b, c)$ is given in sum-of-minterms expression using the Σm notation:

$$
F(a, b, c)=\Sigma m(2,5) .
$$

Implement this function using the fewest number of logic gates. You are to draw the logic diagram clearly, labelling all inputs and the output of the circuit. Complemented literals are not available.
(Logic gates you may use are inverters, AND, OR, NAND, NOR, XOR and XNOR gates. Other than the inverters, the other gates are all 2 -input gates.)
=== END OF PAPER ===

