CS2100

NATIONAL UNIVERSITY OF SINGAPORE

CS2100 - COMPUTER ORGANISATION
(Semester 2: AY2017/18)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. This assessment paper consists of SEVEN (7) questions and comprises
FOURTEEN (14) printed pages.

2. This is a CLOSED BOOK assessment. One double-sided A4 reference sheet is
allowed.

3. Calculators and computing devices such as laptops and PDAs are not
allowed.

4. Answer all questions and write your answers in the ANSWER BOOKLET
provided.

5. Fill in your Student Number clearly with a pen on your ANSWER BOOKLET.
6. Do NOT write your name on your ANSWER BOOKLET.

7. You may use pencil to write your answers.

8. Page 9 onwards contain a blank page, the MIPS Reference Data Sheet and
several blank tables for your rough works.

9. You are to submit only the ANSWER BOOKLET and no other document.

Page 1 of 14

CS2100

(a)

(b)

[10 marks]

Write the output of the following C program. [4 marks]

#include <stdio.h>

typedef struct {
int wval;
char ch[2];
} rec_t;

void processl (rec_t *);
void process2(rec_t);

int main(void) {
rec_t st[2] = {{11,{'A','B'}}, {22,{'C','D'}}};

processl (&st[1l]);

process2(st[0]) ;

printf ("%d %c\n", st[0].val, st[0].ch[0]);
printf ("%d %c\n", st[l].val, st[l].ch[1]);
return O;

}

void processl (rec_t *para) {
para->val = 33;
para->ch[0] += ('
para->ch[1l] += ('

]

a' - 'A'") + 1;
a' - 'aA') + 2;

}

void process2(rec_t para) {
para.val = 44;
para.ch[0] +=
para.ch[l] +=

Given the following hexadecimal representation in IEEE 754 single-precision floating-
point number system:

42F64000

What is the decimal value it represents? [3 marks]

Page 2 of 14

CS2100

1. (continue...)
(c) Given the logic circuit below:
T
|@ 4
A

(i) Whatis F? [2 marks]

(ii) What is the circuit propagation delay if the propagation delay of a NAND gate with
fan-in of nis nt? [1 mark]

2. [15 marks]
A sequential circuit goes through the following states, whose state values are shown in

/@*@ﬁ@ﬁ@ﬁ@\
OOl OOl Ol O

The states are represented by 4-bit values ABCD. Implement the sequential circuit using
a D flip-flop for A, a D flip-flop for B, a T flip-flop for C, and a JK flip-flop for D.

a. Write out the simplified SOP expressions for all the flip-flop inputs. [10 marks]

b. Implement your circuit according to your simplified SOP expressions obtained in part
(a). Complete the given state diagram on the Answer Booklet, by indicating the next
state for each of the five unused states. [5 marks]

Page 3 of 14

CS2100

3.
(a)

(b)

(c)

(d)

[20 marks]
Given the following circuit, what is F? [4 marks]
A B A
1x2 lo L L I
DEC o si 4
—/
A n . s, MUX
EN
|
B

F

Given G(A,B,C,D) =TIM(1, 2, 6, 8, 9, 11, 13), implement G using a single 8:1 multiplexer
without any additional logic gates. Complemented literals are not available. [4 marks]

Given H(A,B,C,D) = ¥m(12, 13), implement H using a single 2x4 active high output
decoder with 1-enable, without any additional logic gates. Complemented literals are not
available. [4 marks]

The BCD code (also known as 8421 code) values for the ten decimal digits are given
below:

Digit: 0 1 2 3 4 5 6 7 8 9
Code: | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001

For example, the decimal value 396 is represented in BCD code as 0011 1001 0110.

Given two decimal digits A and B, represented by their BCD codes A3A>A14A0 and B3B2B1Bo
respectively, implement a circuit without using any logic gates to calculate the BCD code
of the 3-digit output of (51xA) + (20x(B%2)), where % is the modulo operator. Name the
outputs Fi1FioFoFs F7FeFsFa F3FaF1Fo. You are free to use the logical constants 0 and 1.

For example, if A=2 (or 0010 in BCD) and B=7 (or 0111 in BCD), then (51xA) + (20x(B%2))
=122 or 0001 0010 0010 in BCD. Hence, the circuit is to produce the output 0001 0010
0010 for the inputs 0010 and 0111.

(Hint: To help you, you may fill in the table on the Answer Booklet that computes 5xA.
This table is worth 2 marks.)
[8 marks]

Page 4 of 14

(a)

(b)

(c)

(d)

[12 marks]

CS2100

Suppose MIPS instructions in R-format must use the following five opcodes (in decimal):
0, 1, 16, 17 and 32, what is the maximum total number of instructions that can be

supported in MIPS?

[2 marks]

Suppose due to a hardware defect in the datapath circuit, a stuck-at-0 fault occurs at bit
6 of every MIPS instruction. This means that bit 6 of a MIPS instruction is always 0
regardless of what the instruction is originally. Devise a simple test using a MIPS
instruction to discover this error. Explain your test. Keep your explanation clear and

short, in no more than 2 sentences.

The diagram on the right shows a
portion of the datapth.

Suppose the stuck-at-0 fault occurs
at the ALUSrc control signal.
Assuming that $t0 and $t1 contains
12 and 34 respectively, and we are
to use the instruction Iw $t1, 0($t0)
to discover the error. Describe
what other preparation work
needs to be done. You may assume
that we can write data into any
location in the memory. [3 marks]

[3 marks]
L Addressp—— | L) 2.t
= —— (o] Branch b
w,9 = ;
[Inst [31:26] ==
= d —|p e
- & J
&y Inst [25:21] e
N [T/ T{rr1 RD1 opr
» st (2016 1 5/ Legs is0?| |
H .
b A Registers ALU
o
b 0 FS Wi ALUSrc i
e M RD2 Ur;/‘ result|
o qU Tl Llwe &
(= Inst [15:1] |y I U PL 4
1
- S RegWrite —X AlLUcantrol
o % RegDst
o
- Inst [15:0] Sign | |
g Extend
(=] g Inst [5:0]
| ALUop ALU
Control

The table below shows the ALUcontrol signal of the datapath we discussed in class.

Opcode ALUop I:::;cttii:: Ffl:;:’t ALU action ccﬁ\Ltl:ol
Iw 00 load word XXXXXX add 0010
swW 00 store word XXXXXX add 0010
beq 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010
R-type 10 subtract 100010 subtract 0110
R-type 10 AND 100100 AND 0000
R-type 10 OR 100101 OR 0001
R-type 10 set on less than 101010 set on less than 0111

You want to add the bne instruction into the datapath, which already includes the
required hardware for the instruction. Write out the ALUop for bne and how you can
determine whether the bne results in the branch to be taken.

Page 5 of 14

[4 marks]

CS2100

5. [15 marks]
Study the MIPS program below. A and B are integer arrays whose base addresses are in
$s0 and $s1 respectively. The arrays are of the same size n (number of elements). $s2
contains the value n. The address of the first beq instruction is 0x0040003c.

Q5.asm

.data

A: .word 11, 9, 31, 2, 9, 1, 6, 10
B: .word 3, 7, 2, 12, 11, 41, 19, 35
n: .word 8

.text

main: la $s0, A # $s0 is the base address of array A
la $sl, B # $sl is the base address of array B
la $t0, n # $t0 is the addr of n (size of array)

$s2 is the content of n

beq $s2, $zero, End # Address: 0x0040003c
addi $t8, $s2, -1
sll $t8, $t8, 2
Loop: add §$t0, $s0, $t8
add $tl, $sl, $t8
1w $t2, 0($t0)
1w $t3, 0(Stl)
andi $t4, $t3, 3
addi $t4, $t4, -3
beq $t4, $zero, Al
add $t2, $t2, $t3
i A2
Al: addi $t2, $t2, 1
A2: sw $t2, 0($t0)
addi $t8, $t8, -8
slt $t7, $t8, $zero
beq $t7, $zero, Loop
End: 1i $v0o, 10 # system call code for exit
syscall

a. Fill in the missing instruction (the fourth line in the program text) to store the value
of n into $s2. Do not use any pseudo-instruction. [1 mark]

b. Fill in the values of array A after the execution of the code. [4 marks]

c. Write an equivalent C code that does the same work. Use variables A and B for the
arrays, and n for the size of the array. You do not need to declare A, B and n. [4 marks]

Give the instruction encoding in hexadecimal for the following 3 instructions:

d. s1l1 $t8, $t8, 2 (Note:rs=0) [2 marks]
e. J A2 [2 marks]
f. slt $t7, $t8, $zero [2 marks]

Page 6 of 14

CS2100

[14 marks]
Refer to the same MIPS code in the previous question, except that now we focus only on
a section of the code which is reproduced below:

beq $s2, $zero, End # Instl
addi $t8, $s2, -1 # Inst2
sll $t8, $t8, 2 # Inst3
Loop: add $t0, $s0, $t8 # Inst4
add $tl, $sl, $t8 # Instb
1w $t2, 0($t0) # Insto
1w $t3, 0($tl) # Inst7
andi $t4, $t3, 3 # Inst8
addi $t4, $t4, -3 # Inst?9
beqg $t4, $zero, Al # InstlO
add $t2, $t2, $t3 # Instll
j A2 # Instl2
Al: addi $t2, $t2, 1 # Instl3
A2: swW $t2, 0($t0) # Instl4
addi $t8, $t8, -8 # Instlb
slt $t7, $t8, $zero # Instlo
beq $t7, $zero, Loop # Instl7

End:

Assuming a 5-stage MIPS pipeline system with forwarding and early branching, that is,
the branch decision is made at the ID stage. No branch prediction is made and no delayed
branching is used. For the jump (j) instruction, the computation of the target address to
jump to is done at the ID stage as well.

Assume also that the first beq instruction begins at cycle 1.

a. Suppose arrays A and B now each contains 200 positive integers. What is the
minimum number and maximum number of instructions executed? (Consider only
the above code segment from Inst1 to Inst17.) [2 marks]

b. List out the instructions where some stall cycle(s) are inserted in executing that
instruction in the pipeline. These include delay caused by data dependency and
control hazard. You may write the instruction number InstX instead of writing out the
instruction in full. [6 marks]

c. How many cycles does one iteration of the loop (from Inst1 to Inst17) take if the beq
instruction at Inst10 branches to A1? You have to count until the WB stage of Inst17.
[3 marks]

d. How many cycles does one iteration of the loop (from Inst1 to Inst17) take if the beq

instruction at Inst10 does not branch to A1? You have to count until the WB stage of
Inst17. [3 marks]

Page 7 of 14

CS2100

7.

[14 marks]

Refer to the same MIPS code in the previous two questions:

beq
addi
sll
Loop: add
add
1w
1w
andi
addi
beq
add
J
Al: addi
A2: SwW
addi
slt
beq
End:

$s2,
$t8,
$ts,
$to,
$t1,
$t2,
$t3,
$t4,
$t4,
$t4,
$t2,
A2

$t2,
$t2,
$ts,
$t7,
$t7,

$zero, End
$s2, -1
$t8, 2
$s0, $t8
$sl, $t8
0($t0)
0(Stl1)
$t3, 3
$t4, -3
$zero, Al
$t2, $t3

$t2, 1
0($t0)

$t8, -8
$t8, $zero
$zero, Loop

S o S e S o S S S o o S S o o e o

Instl,
Inst?2
Inst3
Inst4
Instb
Insto6
Inst?/
Inst8
Inst9
InstlO0
Instll
Instl2
Instl3
Instl4
Instl5
Instl6
Instl?

Address:

0x0040003c

Assuming that arrays A and B now each contains 1024 positive integers. Given a direct-
mapped data cache with 128 words in total, each block containing 4 words with each
word being 4 bytes long, arrays A and B are stored starting at memory addresses
0x10001000 and 0x1003F100 respectively.

The data cache is involved when memory is accessed (that is, when Iw and sw instructions

are executed).

a. How many bits are there in the index field? In the byte offset field? [2 marks]

b. Which index is A[1023] mapped to? Which index is B[1023] mapped to? [4 marks]

c¢. How many memory accesses in total are made for array A? For array B? [2 marks]

d. What is the cache hit rate for array A? For array B?

[2 marks]

e. Given a direct-mapped instruction cache with 16 words in total, each block
containing 2 instructions (words), and the first beq instruction is at memory address
0x0040003c. How many cache hits and misses are there in total during the execution
of the code, assuming that the beq instruction at Inst10 always branches to A1? You
may consider only the instructions in the given code segment, that is, Inst1 through

Instl7.

~~ END OF PAPER ~~~

Page 8 of 14

[4 marks]

CS2100

(The next few pages contain the MIPS Reference Data sheet,
blank truth tables, K-maps and pipeline charts.)

Page 9 of 14

CS2100

®©

M I P s Reference Data

CORE INSTRUCTION SET OPCODE
FOR- /FUNCT
NAME, MNEMONIC MAT OPERATION (in Verilog) {Hex)
Add acd R R[rd] = R[rs] + R[rt] (1) 0/ 20p,
Add Immediatc addi I R[rt] = R[rs] + SignExtimm (1.2} By
AddImm. Unsigned zddia I R[rt] = R[rs] + SignExtlmm (2) Yex
Add Unsigned addu R R[rd] = R[rs] + R[n] 0/ 2l pex
And and R R[rd] = R[rs] & R[r1] 0/ 24,
And Immediate andi I R[rt] = R[rs] & ZeroExtlmm (1) Opes
BeanchOn bqual be 1 IR o @ e
Branch On Not Equal bne [lrl("]({_‘[l—‘;"](!_‘iﬁggzanch.%ddr (4) Shex
Jump]] PC=lumpAddr (5} Zhex
Jump And Link jal T R[31]=PC+8PC=JumpAddr (5) Ipex
Jump Register ir R PC=R[rs] 07 08pey
Load Byte Unsigned Lbu 1 R[rl]:{fg;bgg'ggﬁgi]](7:o]) @ 2440
Load Halfword R[rt]={16"b0,M[R[rs]

Unsigned thu 1 +SignExtImm](15:0)} @) hex
Load Linked il [Rrt] =M[R[rs]+5ignExtlmm] (2.7) 30y,
Load UpperImm. .ui [R[rt]= {imm, 16’b0} Fluex
Load Word Lw 1 R[rt] = M[R[rs] +SignExtlmm] (27 2,
Nor nor R R[rd] =~ (R[rs] ‘ RIn]} 07 2
Or or R R[rd] =R[rs] | R[r1] 07250,
Or Immediate ori I R[rt] = R[rs] | ZeroExtImm (3 dpy
Set Less Than a1t R Rird]—{RJrs] < R[eth?1:0 0/ 2ay,,
Set Less Than Imm. s1ti I R[n]=(R[rs] < SignExtImm)? 1: G{2) ape
Set Less.Than Imim. slein] R[] = (R[rs] < SignExttmm) By

Unsigned ?1:0 {2.6) *
Set Less Than Unsig, s1=u R R[rd] {R[rs]<R[rt])?1:0 (6) 0/ 2by,,
Shift Left Logical =11 R R[rd] = R[rt] << shamt 0/ 00y,
Shift Right Logical =r1 R R[rd] = R[zt] >> shamt 0/ 02
Store Bytc o I M[R[rs]+ SignExlllr;}?:]]((;‘::g]): o 2Bpen
Storc Conditional <¢ [MIR[rs] J;:'[lr%]" ETS::::]L):?RI[fﬂo 2.7 I8ien
Store Halfword zh I M[R[rs]*Signl:‘xtlm;][]r(lﬁ l[? 0=)) 2ex
Storc Word sw 1 M[R[rs]+SignExtimm] = R[rt] {2) 2bp,,
Subtract sub R R[rd]= R[rs] - R[rt] 1y O/ 22,
Subtract Unsigned subu R R[rd] = R[ts] - R[rt] 0/ 23,

(1} May cause overflow exception

(2) SignExtlmm = { 16{immediate[15]}, immediate }

(3) ZeroExlmm = § 16 [b 0} immediate }

(4) BranchAddr - { 14{immecdiatc[15]}, immcdiate, 2700 }

(5) JumpAddr = { PC~4[31:28], address, 2°b0 }

(6) Operands considered unsigned numbers {vs. 2’s comp.)

(7) Atomic testdeset pair; R[et] = | if pair atomic. 0 if not atomie

BASIC INSTRUCTION FORMATS

R | opeode | IS | rt ‘ rd I shamt ‘ funet
M R iE 21 20 16 15 0 63 o
1 [opeode Is [rt i immediate
31 26 25 a®m s) T
J opeode | _ address - J
31 26 25 o

ARITHMETIC CORE INSTRUCTION SET OPCODE
/FMT /FT
FOR- { FUNCT
NAME, MNEMONIC MAT OPERATION {Hcx)
Branch On FPTrue belt FLoOif{FPeond)PC=PC+4+BranchAaddr {4) 11/8/1/--
Branch On FP False telt FI iff!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/--
Dhvide div R Lo=R[rs]/R[rt]; H=R[rs]%R[1t] Oi—-I—-Ila
Divide Unsigned divu R Lo=R[rs]/R[cet]; Hi=R[rs]%R[rt] {6} G~~/--/1b
FP Add Single add.= FR F[fd]= F[fs] + F[fi] 11/10/--/0
FP Aadd FfaL,F[fd+ 11} = {FIfsLF[fs+11} +
o aca.a PR (FIRLFIGHL {{F[[ﬁ]]!F[[ﬁH]]}} 1140
FP Compare Single cx.s®* FR FPeond=(F[fs]op F[R])? 1 : 0 L1107ty
FP Compare . FPeond = ({F[fs),F[fs+1]} o
o Comp cxdt FR {F[[fg]f[[ﬂﬂ}” Pl Ly
*xiseq 11, or o) (opis==, < or <=) (¥ is 32, 3¢, or 3c)
FP Divide Single a1v.s FR E[fd] = F{fs]/ F[fi] 11710473
FP Divide) F[fa],F[fd+11} = {F[fs],F[fs+1]} /
Db siv.a PR {FTRILFIR 1} {{F[[fl]]f[[ﬂ*l}}) 113
FP Multiply Single mul.= FR F[fd] = F[fs] * F[f] 11410572
FP Multipl F(fd],F[fd+1]} = {F[fs),F[fs+1]} *
Doultiply g FRAFIRLELR-LD {{F[[ﬁ]]f[[ﬂﬂ]])} A2
FP Subtract Single subh.s FRF[fd]=F[fs] - F[fi] 1141041
FP Subtract F[fd),F[fd+1]} = {F[fs].F[fs+1]} -
o cup.s PR CCRLF(EH]Y {{F[[n]],F[[ﬁu]]}} LA
Load FP Single Lwcl 1 FlrtlEM[R[rs]+SignExtlmm)] {2y 3li-etefe
Load FP Ldel [Flttl=M[R[rs]+SignExtlmm]; {2) 35/ fee
Double Flrt+ 1]=M[R[rs]+ SignExtImm-+4] :
Move From Hi mfhi R R[rd]=Hi O /10
Move From Lo mEle R R[rd]=Lo O /412
Move From Control mfct R R[rd] = CR[rs) 10/0/--10
Multiply milt R {HiLo}=R[rs] * R[r] Of-—i=-(18
Multiply Unsigned multa R {Hi,Lo} =R[rs] * R[r] (6] 0/--i--{19
Shift Right Arith. sra R R[rd]) = R[tt] >>> shamt 04f--13
Store FP Single swol I M[R[rs]+SignExtlmm] = F[rt] {2) 39/enfeni-n
Store FP cde- 1 MI[R[rs]+SignExtlmm] = F[rt]; 2) I fetanto
Double - MIR[rs+SignExtimm+4] = F[rt+1]
FLOATING-PQINT INSTRUCTION FORMATS
FR | opeode | fmit ‘ ft | fs fd funct l
30 26 25 2020 16 15 I [E] b
] | opeode | fmt ‘ ft immediate J
T 2623 w1618 T T
PSEUDQINSTRUCTION SET
NAME MNEMONIC OPERATION
Branch Less Than blt if{R[rs]<R[rt]} PC -- Label
Branch Greater Than bar if(R[rs]>R[rt]) PC = Label

Branch Less Than or Equal ble if(R[rs]<=R[rt]) PC = Label
Branch Greater Than or Equal bge if(R[rs]>=R[rt]) PC = Label
Load Immcdiate 1i R[rd] = immediate

Move R[rd] = R[rx]
REGISTER NAME, NUMBER, USE, CALL CONVENTION

mave

PRESERVEDACROSS
NAME NUMBER USE A CALL?
$zcro [1] The Constant Value 0 NA.
fat 1 Assembler Temporary No
$vD-Bvl 3.3 Valugs for Fpnctlon chults No
and Expression Evaluation
$a0-$a3 4-7 Argumcnts No
$t0-$17 8-15 Temporarics No
$s0-Fs7 [6-23 Saved Temporarics Yes
3t8-$19 24-25 Temporanes No -
Bh-3k 1 26-27 Reserved for OB Kemel No
Sp 28 Cilobal Pointer Yes
$sp 29 Stack Peinter Yes
1313 0 Frame Pointer Yes
Jra 31 Return Address Yes

Copyright 2009 by Elscvicr, Ine., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th cd.

Page 10 of 14

(This page is for your rough work.)

CS2100

A A* B* c D*
DA DB TC
/D KD

Page 11 of 14

CS2100

(This page is for your rough work.)

Page 12 of 14

(This page is for your rough work.)

CS2100

N

w

beq

12
addi

sll

addi

110
beq
Al

111
add

112
JA2

113
Al:
addi

114
A2:
SW

115
addi

116
slt

117
beq

Page 13 of 14

CS2100

(This page is for your rough work.)

[EEN
[EEN
[y
[EEN
[EEN
[y
[y
[y
=
=
N

beq

12
addi

sll

addi

110
beq
Al

111
add

112
JA2

113
Al:
addi

114
A2:
swW

115
addi

116
slt

117
beq

Page 14 of 14

N
w

