Remember to bring this along to your lab!
(Week 13: 15-19 April 2024)
[This document is available on Canvas and course website https://www.comp.nus.edu.sg/~cs2100]

Name: \qquad Student No.: \qquad
Lab Group: \qquad This is your final lab! (3)
Objective: Please complete at least ten minutes before the hour.
In this experiment, you will use logisim to analyse and design sequential circuits.

Complete Part I before coming to your lab!

Part I

1. Run logisim, open the file lab10.circ. The circuit is shown below.

2. The circuit consists of two JK flip-flop and an OR gate. Note the following:

- The outputs of the two JK flip-flops are labelled A and B, which form the state of the circuit.
- The Clock Ψ is connected to the clock inputs of the flip-flops.
- The logic constant 1 is connected to the Enable inputs of the flip-flops.
- The Clear switch is connected to the clear inputs of the flip-flops. Hence when Clear $=1$, it clears the contents of both flip-flips to 0 , bringing the circuit to the initial state of $A B=00$.
- The flip-flop inputs are as follows:

For flip-flop $A:$	$\boldsymbol{J} \boldsymbol{A}=\boldsymbol{A}+\boldsymbol{B} ;$	$\boldsymbol{K} \boldsymbol{A}=\mathbf{0}$
For flip-flop $B:$	$\boldsymbol{J B}=\mathbf{1} ;$	$\boldsymbol{K} \boldsymbol{B}=\boldsymbol{A}+\boldsymbol{B}$

3. Complete the following table:

Present state		Flip-flop inputs				Next state	
\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{J} \boldsymbol{A}$	$\boldsymbol{K} \boldsymbol{A}$	$\boldsymbol{J} \boldsymbol{B}$	$\boldsymbol{K} \boldsymbol{B}$	\boldsymbol{A}^{+}	\boldsymbol{B}^{+}
0	0						
0	1						
1	0						
1	1						

4. Verify the correctness of your table above by testing the circuit in Logisim.
a) Click on "Clear" input to get 1 . This clears both flip-flops to 0 , bringing the circuit to the initial state of $A B=00$.
b) Click on "Clear" input to get 0 before you proceed. This puts the flip-flops in their normal operation mode.
c) Clicking the "Clock" input toggles its value. When the "Clock" value changes from 0 to 1 (i.e. a rising edge), the flip-flops react according to the commands at their J and K inputs.
d) Click the "Clock" input several times to simulate the square wave, and watch the outputs of the flip-flops change their values. Do the values follow your table above?
e) If at any point of time you want to reset the flip-flops to the initial state of 00 , go to step (a) above.
5. Complete the state diagram below.

Part II

6. During the lab session, you will design a sequential circuit. Your labTA will provide you with the flip-flop inputs. Copy down the flip-flop inputs below:

$$
\begin{array}{lll}
\text { For flip-flop } A: & \boldsymbol{J} \boldsymbol{A}=\ldots ; & \boldsymbol{K} \boldsymbol{A}= \\
\text { For flip-flop } B: & \boldsymbol{J} \boldsymbol{B}=\ldots & \boldsymbol{K} \boldsymbol{B}= \\
\hline
\end{array}
$$

7. Complete the following table:

Present state		Flip-flop inputs					Next state	
\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{J} \boldsymbol{A}$	$\boldsymbol{K} \boldsymbol{A}$	$\boldsymbol{J} \boldsymbol{B}$	$\boldsymbol{K} \boldsymbol{B}$	\boldsymbol{A}^{+}	\boldsymbol{B}^{+}	
0	0							
0	1							
1	0							
1	1							

8. Complete the state diagram below.

11
9. You do not need to implement this circuit.
10. As this is your final lab, your lab report will not be returned to you.

Total: 20 marks

