CS2100 Computer Organisation Lab #10: Using Logisim II

Remember to bring this along to your lab!

(Week 13: 15 - 19 April 2024)

[This document is available on Canvas and course website https://www.comp.nus.edu.sg/~cs2100]

Name:	Student No.:				
Lab Group:	This is your final lab! 🔞				
Objective:	Please complete at least ten minutes before the hour.				
In this experiment, you will use logisim to analyse and design sequential circuits.					
Con	uplete Part I before coming to your lab!				

Part I

1. Run logisim, open the file **lab10.circ**. The circuit is shown below.

- 2. The circuit consists of two JK flip-flop and an OR gate. Note the following:
 - The outputs of the two JK flip-flops are labelled *A* and *B*, which form the state of the circuit.
 - The Clock I is connected to the clock inputs of the flip-flops.
 - The logic constant 1 is connected to the Enable inputs of the flip-flops.
 - The Clear switch \bigcirc is connected to the clear inputs of the flip-flops. Hence when Clear = 1, it clears the contents of both flip-flips to 0, bringing the circuit to the initial state of AB=00.

• The flip-flop inputs are as follows:

For flip-flop A:	JA = A + B;	KA = 0
For flip-flop <i>B</i> :	<i>JB</i> = 1;	KB = A + B

3. Complete the following table:

Preser	nt state	Flip-flop inputs		Next state		state	
A	В	JA	KA	JB	KB	A^+	B ⁺
0	0						
0	1						
1	0						
1	1						

- 4. Verify the correctness of your table above by testing the circuit in Logisim.
 - a) Click on "Clear" input to get 1. This clears both flip-flops to 0, bringing the circuit to the initial state of AB=00.
 - b) Click on "Clear" input to get 0 before you proceed. This puts the flip-flops in their normal operation mode.
 - c) Clicking the "Clock" input toggles its value. When the "Clock" value changes from 0 to 1 (i.e. a rising edge), the flip-flops react according to the commands at their J and K inputs.
 - d) Click the "Clock" input several times to simulate the square wave, and watch the outputs of the flip-flops change their values. Do the values follow your table above?
 - e) If at any point of time you want to reset the flip-flops to the initial state of 00, go to step (a) above.
- 5. Complete the state diagram below.

[4 marks]

AY2023/24 Semester 2

[6 marks]

Part II

6. During the lab session, you will design a sequential circuit. Your labTA will provide you with the flip-flop inputs. Copy down the flip-flop inputs below:

For flip-flop A:	<i>JA</i> =;	<i>KA</i> =
For flip-flop <i>B</i> :	<i>JB</i> =;	<i>KB</i> =

7. Complete the following table:

Preser	Present state		Flip-flop inpu			Next	state
A	B	JA	KA	JB	KB	A^+	B ⁺
0	0						
0	1						
1	0						
1	1						

8. Complete the state diagram below.

- 9. You do not need to implement this circuit.
- 10. As this is your final lab, your lab report will not be returned to you.

Total: 20 marks

AY2023/24 Semester 2

CS2100 Lab #10

[4 marks]

[6 marks]