CS2100: Computer Organisation
Lab #1: Debugging using GDB

Name: Student No.:
Lab Group: Remember to bring this
along to your lab.
Objective: Prepare your l:eport 1
You will learn how to use GDB to debug a C program. before attending the lab!
Procedure:
1. Download the file 1abl. c from Canvas “Labs page”. Complete the setup in Lab #0.
2. Enter your Linux environment. (1ima in MacOS, ws1 in Windows)
3. Compile 1abl. c with gcc using the following command: gcc —g —o labl labl.c
4. What is the purpose of the flags “g” and “o” in gcc?
5. Execute the program you just compiled using the command: ./labl. What is the error
encountered? (if any)
Answer:
6. Start the GDB debugger by using the command: gdb labl
To run the program in GDB, you can use the command run at the GDB prompt. This will
run the whole program without any pause. Type run to execute the program.
7. To get into the debug mode, use the start command
8. The breakpoint command puts an intentional pause in the program execution. Once paused,

you can inspect the variable values and resources at that point in the program execution.
Multiple breakpoints can be set. Set a breakpoint in GDB at any line number using:

>break <lineNumber> | ¢ 1ist command lets us view the source code at any point

or e layout srcand layout asmcommands letsus /

>b <lineNumber> view the source code/assembly code in a split screen. {‘W'}



Example: > break 6

This sets a breakpoint at line 6. Now if you run the program, it will pause at line 6. You can
continue execution (till the next breakpoint or end) using the continue (or ‘cont’ in short)
command.

Which line(s) would you set the breakpoint(s) at to debug the earlier error?

Answer:

9. The step command is used to carry out step-by-step execution of the program. You can
step through the program using the following command:

> step
This will execute only the next line of code, or
> step <numberOfLines>

Example “> step 3” will execute next three lines of code

» You can “switch on” display of the associated assembly code related ,—-
to the instruction being executed using the command: { ">
set disassemble-next-line on N

10. At every step (or breakpoint) you can view a variable value using the print command:

>print a

You can view all local variable values using the command:

>info locals

What are the values of variables ¢ and d at the start of line 8 (before executing line 8)?

Answers:

11. You can view the register values at any step or breakpoint using this command:
>info registers

12. Besides breakpoints, another very useful facility of GDB is watchpoint. While a breakpoint
pauses execution at a particular point in the code (i.e., “reach line x, pause execution”), a
watchpoint will pause execution when a particular condition is satisfied (i.e., “a certain

condition met, pause execution”). For example,

>watch (i==2)

AY2025/26 Semester 2, Week 4 -2o0f3- CS2100 Lab #1



will pause execution whenever the condition, in this case “1i==2" is satisfied. The condition
is written using the C syntax.

Do note that the variable has to be in scope. This may mean that you have to first set a
breakpoint to where the (local) variable comes into scope, then set a watchpoint. Otherwise,
GDB may complain “no idea what variable i you are talking about”.

You can see what are the watchpoints set by:

>info watchpoints

and remove them by

>delete
(No argument means all watchpoints will be deleted.) Or, delete specific watchpoints by:

> delete <corresponding watchpoint number obtained via “info watchpoints™>

13. You can stop the debugging by using the stop command. To quit GDB, use the quit
command.

14. Debug and modify 1abl . c to carry out four arithmetic operations (+, -, /, *) and print the
days of the week. The output of the program should look as follows:

Arithmetic operations:

a+b = 110
a-b = 90
b/a =0
a*b = 1000

Days of the week:

Day[0] = Monday
Day[1l] = Tuesday
Day[2] = Wednesday
Day[3] = Thursday
Day[4] = Friday
Day[5] = Saturday
Day[6] = Sunday

Show your labTA the output of your corrected program.

15. Submit this report to your labTA at the end of the lab. You do not need to submit the corrected
program. You are not to email the report to your labTA.

Marking Scheme: Report — 6 marks; Correct output — 4 marks; Total: 10 marks.

AY2025/26 Semester 2, Week 4 -30f3- CS2100 Lab #1



