
1

CS2100 Computer Organization
A Quick Introduction to C

1. Introduction

This document gives a very quick introduction to the C Programming Language. It is
assumed that the reader is already reasonably proficient in programming methodology,
and hence this document does not explain basic programming concepts like data-types
and functions. It will however explain concepts that are unique to C, like pointers. The
objective of this document is not to teach how to program in C, but to make the relevant
sections of the CS2100 lecture notes comprehensible to programmers who are unfamiliar
with the C programming language.

2. Data Types in C

Unlike languages like Python and JavaScript, C is a strictly typed language. C also
strictly requires that all variables are declared before being used. The code fragment
below shows how to declare a signed integer and a floating point number:

 int x; // x is a signed integer
 float y; // y is a floating point number (i.e. it holds real numbers)

2.1 Numerical Data Types

The common C numerical data types are:

Type Meaning Size and
Encoding

Range

char Signed byte 8 bits, 2’s
complement

-128 to 127

unsigned char Unsigned byte 8 bits, unsigned 0 to 255

short Signed
integers

16 bits, 2’s
complement

-32768 to 32767

unsigned short Unsigned
integers

16 bits, unsigned 0 to 65535

int Signed
integers

32 bits, 2’s
complement

-2,147,483,648 to 2,147,483,
647

unsigned Unsigned
integers

32 bits, unsigned 0 to 4,294,967,295

long Signed
integers

64 bits, 2’s
complement

-9,223,372,036,854,775,808
to
9,223,372,036,854,775,807

unsigned long 64 bits, unsigned 0 to
18,446,744,073,709,551,615

float Signed floating
point

32-bit IEEE 754 +/- 1.2e-38 to 3.4e+38

double Signed float 64-bit IEEE 754 +/- 2.3e-308 to 1.7e+308

2

2.2 Alphanumeric Data

All data in C is (or can be) represented as integers. Characters are represented by 8-
bit “char” integers (based on the ASCII table) and strings are represented as an array
of char:

 char mystr[128]; // This is a string of 127 characters.

Notice that an array of 128 char stores a string of 127 characters. This is because all
strings in C must be terminated by a ‘\0’ (ASCII 0) character (called a NULL character).

2.3 Boolean Values

C does not have Boolean values; True and false values are represented by integers,
with 0 being False, and any non-zero value being True. Hence:

 if(0) {
 // The statement here will never be executed since 0 is false
 }

 if(-1) {
 // The statement here will always be executed since -1 is true.
 }

In C we do not assume that the “True” value is always 1. It can be any non-zero
value. This can cause problems; The statement below shows the correct way to
do comparisons:

 if(x == 5) {
 // Executed if x is 5
 }

But:

 if(x = 5) {
 // Always executed. C assigns 5 to x, then takes the result 5 in the
 // if statement. Since 5 is true, this block is always executed.
 }

3

3. C Statement Types

a. Statement Blocks

Similar to Javascript (but different from Python), C statement blocks are marked with
curly {..} braces. For example the following statements form a block in C:

{
 printf(“Hello world.\n”);
 i = 4;
 printf(“i = %d.”, i);
}

Unlike Python, indentations in blocks is optional, but should be included for
readability. Also unlike Javascript and Python, all C statements must be terminated by
a semicolon ‘;’. In fact carriage returns in C are optional; C separates statements solely
with the ‘;’. So the block above can be rewritten as:

{printf(“Hello world.\n”);i=4;printf(“i=%d.”,i);}

Because of this unique property, it is possible to write very fancy looking C source code
and there the “International Obfuscated C Code Competition” held almost every year
to celebrate creativity in writing C programs. The 2019 winner is shown below (this
program converts text to sound using fonts as a spectrogram):

4

b. Iterations

C supports several types of iterations with slight differences:

i) The For Loop

The most basic C iteration is the for loop. It consists of 3 parts: An initializer, a
continuation condition, and a modification operation, separated by semi-colons.
To count from 0 to 9 we would do:

for(i=0; i<10; i++) {
 … C statements …
}

Due to its flexibility, the for statement is very powerful; we can for example count
downwards from 9 to 0:

 for(i=9; i>=0; i—) {
 … C statements …
 }

Each part is optional; If we don’t want to initialize i, we can do:
 for(; i <=9; i++) {
 … C statements …
 }

You can also implement a loop that counts infinitely from any initial value:

 i=5; // Some statement that sets i to 5

 for(;;i++) {
 // i will start from 5 and increment indefinitely.
 }

If we had a string “mystr” we can count how many characters are in the string
using:

 for(ctr=0; mystr[ctr] != 0; ctr++);

When this for loop ends ctr will contain the number of characters in mystr.

Lastly the for loop can also be used for infinite loops, simply by leaving out every
part:

 for(; ; ;) {
 // This is an infinite loop

}

5

ii) The While Loop

The while loop works similarly to the for loop, except that the “while” statement
itself contains only the continuation condition; initialization and update are done
separately. Our “string count” operation would be written as:

 ctr = 0;

 while(mystr[ctr] != 0) {
 ctr++; // Increment ctr

}

Since any non-zero value is true, we can do an infinite loop using while by doing:

while(1) {
 // This body executes infinitely
}

iii) The Do..While Loop

The do..while loop is fairly unique to C. Since the continuation condition is tested
only at the end of the body, this means that the body will always be executed at
least once:

 do {
 ctr++;
 } while(mystr[ctr] != 0)

 Here ctr will be incremented as least once, even if mystr[0] is 0.

c. Conditional Statements

i) The if..else statement

The if..else statement in C is fairly straightforward:

 if(.. condition..) {
 // This part is executed if the ..condition.. is true (non-zero)

} else {
 // Otherwise this part is executed.
}

6

C however does not have an explicit “elif” (else if) statement, and this must be
handled with:

 if(condition1) {
 …
 } else

if(condition2) {
 …
}
else
{
 … Executed if condition2 is false…
}

ii) The ternary if..else statement

Just as in Javascript, we can use the ternary if..else operation:

 (<condition> ? <if part> : <else part>)

So if we did:

 y = (x > 0 ? 3 : 2);

The “y” variable would be set to 3 if x is greater than 0, and 2 otherwise.

7

iii) The switch statement:

The C Programming Language has the switch statement, which can handle
multiple choices without having to deeply nest if..else statements. The statement
takes the form:

 switch(<integer variable>) {
 case 1:
 … something …
 break;

 case 2:
 … something else …
 break;

 case 3:
 .. something else again …
 break;

 default:
 .. Every other case is handled here ..

}

The switch statement only works with integer variables (including “char”, which if
you recall is a 1-byte integer). You also need a “break” statement after each case,
to force execution to exit from the switch statement, instead of falling through all
the other cases. The “default” keyword is used to catch all other cases that are not
explicitly stated. You can use switch to implement a menu system:

 choice = readMenuOption(); // Get menu option from user

 switch(choice) {

 case ‘a’: callOptionA();
 break;

 case ‘b’: callOptionB();
 break;

 case ‘c’: callOptionC();
 break;

 default:
 printf(“Don’t understand. Please choose a, b or c.”);
 }

8

4. Pointers

The idea of pointer variables is arguably the most difficult concept in C to grasp. Every
memory location in a computer is indexed with an address (also called a “memory
location”). All variables in C must be stored in memory, and a pointer variable simply
stores the address of another variable.

So if we had:

 int *x;

 This declares a pointer variable x, and it will point to another variable of type int.

Let’s suppose variable y is stored in location 0x5004. The figure below shows memory
contents from addresses 0x5000 to 0x5008.

Address Value Description
0x5000

55

Variable z 0x5001
0x5002

0x5003

0x5004

72

Variable y
0x5005

0x5006
0x5007

0x5008

… … …

Notice firstly that every memory location has an “address”, and stores “values”. The
Description column tells us what the memory holds, but is not actually stored
anywhere – it is there just for our information. Also notice that each variable occupies
four memory locations; this is because each int is 32-bits long, which is four bytes, and
each address refers to an individual byte in memory (byte-addressable memory).

Now if we did:

 x = &y;

The “&” operator, called the “address-of” operator, returns the address of y. This is
stored into x, which is a pointer variable and stores addresses of other variables. Now
if we did:

 printf(“x is %x”, x);

The program will tell us 0x5004, which is the address of y.

9

Now what can we do with this? We could make two address variables point to exactly
the same variable:

 int *a;

 a = x; // Now both a and x point to y.

This is very useful in “call by reference” parameter passing which we will see shortly.

Now that x (and a) point to y, can we use them to access (and change) y’s value? Yes,
using the “de-referencing” operation.

In a fit of ingenuity, the designers of C decided to use the same “*” operation (the one
used to declare pointer variables) to also access the value pointed to.

So if we did:

 printf(“The value pointed to by x is %d.”, *x);

We would get:

 The value pointed to by x is 72.

This is the value that is in y.

Now remember that a is also pointing to y. If we do:

 *a = 123;

Our memory will now look like this:

Address Value Description

0x5000
55

Variable z 0x5001

0x5002

0x5003

0x5004

123

Variable y
0x5005

0x5006

0x5007
0x5008

… … …

This is because C uses the “*” de-referencing operator to access a, getting the address
0x5004, then going to that address and storing 123.

10

5. Functions

As in other languages, a function in C is a unit that takes inputs, performs some sort
of transformation on the input and produces an output. However as with other
languages, a function may not necessary take inputs (called arguments) and may not
necessary produce a value.

A C function is declared as follows:

 <return type> <function name>(<param1 type><param1>, <param2 type>
 <param2>, …) {

 .. function body ..
 }

The function below returns the sum of two integers:

 int sum(int a, int b) {
 return a + b;

}

 The function below halves the argument:

 float half(int a) {

 return a / 2.0;
 }

 The function below doesn’t take any arguments nor does it return a value:

 void say() {
 printf(“Say what?\n”);
 }

11

5.1 Call by Value vs. Call by Pointer

All arguments are “passed by value” to functions (i.e. in C, all function arguments
are “call by value”). To understand what this means, let’s look at our earlier sum
function:

 int sum(int a, int b) {

 return a + b;

}

Now let’s declare two variables x and y and call sum with them:

int x = 5, y = 6;

z = sum(x, y);

The diagram below shows what happens:

int sum(,)

Here 5 is copied from the argument x into the parameter a, and 6 is copied from the
argument y into the parameter b. This means that a and b are second copies of x and
y.

a = 5 b = 6

x = 5 y = 6

12

This has implications. Supposed we modify a within the body:

 int sum() {

 a = 10;
 }

 The picture below shows what happens:

int sum() {

Notice that while a is changed to 10, x remains as 5. Therefore we cannot use this as
a means of passing back values through the parameters.

 This is where call-by-pointer comes in. We rewrite our function as:

 int sum(int *a, int *b) {

 *a = 10;
 return *a + * b;

}

 Now we call it with:

 sum(&x, &y);

What happens now is that the ADDRESSES of x and y are copied “by value” into a and
b. When we de-reference a (which points to x) in this statement:

 *a = 10; // a contains address of x

C will look at the address in a, go to that address and write in 10. Since a is pointing to
x, this causes x to be modified to 10.

a = 5 b = 6

x = 5 y = 6

a = 10 b = 6

x = 5 y = 6

13

6. Conclusion

This is a very short brief introduction to the C programming language. It is not sufficient
to get you started in programming C, but should be enough for you to understand the
lectures.

