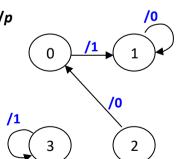

CS2100 Computer Organisation Tutorial #9: Sequential Circuits (Week 11: 1 – 5 April 2024) Answers to Selected Questions

Tutorial Questions

1. A four-state sequential circuit below consists of a *T* flip-flop and a *D* flip-flop. Analyze the circuit.

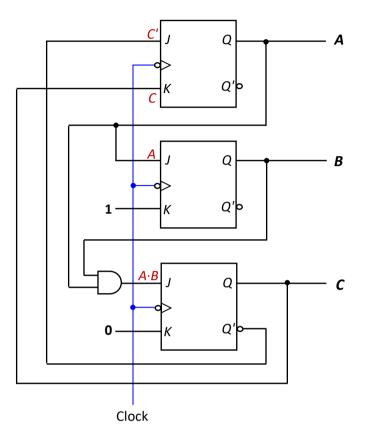


- (a) Complete the state table and hence draw the state diagram.
- (b) Assuming that the circuit is initially at state 0, what is the final state and the outputs generated after 3 clock cycles?

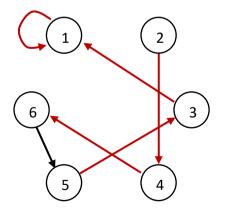
A state is called a *sink* if once the circuit enters this state, it never moves out of that state.

- (c) How many sinks are there for this circuit?
- (d) Which is likely to be an unused state in this circuit?

Answe (a)					p = A·B + TA = A·B DB = A'+	1		/p
	Present state		Output	Flip-flo	p inputs	Next state		
	Α	В	р	ΤΑ	DB	A +	B +	
	0	0	1	0	1	0	1	
	0	1	0	0	1	0	1	/1
	1	0	0	1	0	0	0	
	1	1	1	0	1	1	1	



(b) After 3 clock cycles, the circuit is in state 1, and it generated 100 as output.


- (c) There are 2 sinks: states 1 and 3.
- (d) State 3 is likely to be an unused state.

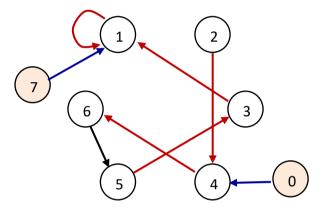
2. [AY2021/22 Semester 2 Exam]

A sequential circuit with 6 states: state 1 (ABC=001₂) through state 6 (ABC=110₂) is implemented using three *JK* flip-flops as shown below.

(a) Complete the state diagram below. One of the transitions has been drawn for you.

(b) A circuit is **self-correcting** if for some reason the circuit enters into any unused (invalid) state, it is able to transit to a valid state after a finite number of transitions. Is this circuit self-correcting? Explain.

Answer: Yes, it is self-correcting. State 0 transits to state 4 and state 7 transits to state 1.


Working:

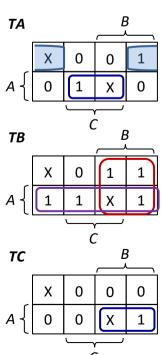
(a) JA = C'; KA = C; JB = A; KB = 1; $JC = A \cdot B$; KC = 0.

Fill in the flip-flop inputs in the state table using the above expressions, then find the values of A^+ , B^+ , and C^+ .

Pre	Present state		Next state			Flip-flop inputs						
Α	В	С	A^+	B ⁺	<i>C</i> ⁺	JA=C'	KA=C	JB=A	<i>KB</i> =1	JC=A∙B	<i>KC</i> =0	
0	0	0	1	0	0	1	0	0	1	0	0	
0	0	1	0	0	1	0	1	0	1	0	0	
0	1	0	1	0	0	1	0	0	1	0	0	
0	1	1	0	0	1	0	1	0	1	0	0	
1	0	0	1	1	0	1	0	1	1	0	0	
1	0	1	0	1	1	0	1	1	1	0	0	
1	1	0	1	0	1	1	0	1	1	1	0	
1	1	1	0	0	1	0	1	1	1	1	0	

State diagram with unused states 0 and 7.

3. [AY2021/22 Semester 2 Exam]

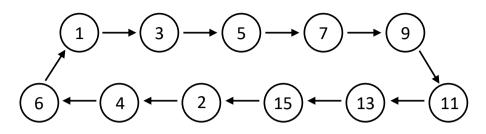

Redesign the circuit in question 2 by using only *T* flip-flops. You do not have to follow where the unused states transit to in question 2. Write out the flip-flop input functions *TA*, *TB* and *TC* so that your new design can be implemented with the fewest number of logic gates other than the flip-flops.

Answers: 3 logic gates (XNOR, OR, AND)

 $TA = A \cdot C + A' \cdot C' = A \odot C$ TB = A + B $TC = A \cdot B$

Working:

Present state			N	ext stat	e	Flip-flop inputs			
Α	В	С	<i>A</i> +	B ⁺	C⁺	TA	ТВ	ТС	
0	0	0	Х	Х	Х	Х	Х	Х	
0	0	1	0	0	1	0	0	0	
0	1	0	1	0	0	1	1	0	
0	1	1	0	0	1	0	1	0	
1	0	0	1	1	0	0	1	0	
1	0	1	0	1	1	1	1	0	
1	1	0	1	0	1	0	1	1	
1	1	1	Х	Х	Х	Х	Х	Х	

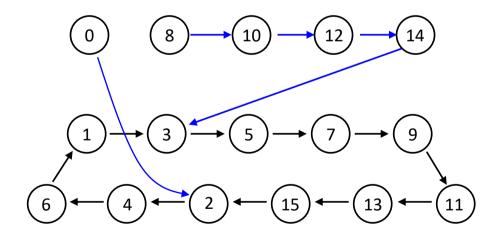


AY2023/24 Semester 2

CS2100 Tutorial #9 Selected Answers

4. [AY2018/19 Semester 2 exam]

A sequential circuit goes through the following states, whose state values are shown in decimal:



The states are represented by 4-bit values *ABCD*. Implement the sequential circuit using a *D* flip-flop for *A*, *T* flip-flops for *B* and *C*, and a *JK* flip-flop for *D*.

- (a) Write out the simplified SOP expressions for all the flip-flop inputs.
- (b) Implement your circuit according to your simplified SOP expressions obtained in part (a). Complete the given state diagram, by indicating the next state for each of the five unused states.
- (c) Is your circuit self-correcting? Why?

Answers:

 $DA = A \cdot B' + A \cdot C' + A' \cdot B \cdot C \cdot D$ TB = CTC = A' + B' + C' $JD = B \cdot C$ $KD = A \cdot B \cdot C$

The circuit is self-correcting as any unused state can transit to a used state after a finite number of cycles.