CS2100 Computer Organisation

Tutorial #11: Cache
(Week 13: 15 — 19 April 2024)
Answers to Selected Questions
Tutorial Questions

2. Use the series of references given in question 1 above: 4, 16, 32, 20, 80, 68, 76, 224, 36, 44, 16,
172, 20, 24, 36, and 68 in a MIPS machine. Assuming a two-way set-associative cache with two-
word blocks and a total size of 16 words that is initially empty, label each address reference as
a hit or miss and show the content of the cache. Assume LRU replacement policy.

You may write the data word starting at memory address X as M[X]. (For example, data word
starting at memory address 12 is written as M[12]. This implies that the word includes the 4
bytes of data at addresses 12, 13, 14 and 15.) You may write the tag values as decimal numbers.
If a block is replaced in the cache, cross out the corresponding content in the cache, and write
the new content over it.

Answer:

Since this is a MIPS machine, a word consists of 4 bytes or 32 bits.
Should first work out the tag, set index, and offset fields:

27 bits 2 bits 3
Tag Set Index Offset

4: 00...000 00 100 < Miss
16: 00...000 10 000 €« Miss
32: 00...001 00 000 €« Miss
20: 00...000 10 100 < Hit
80: 00...010 10 000 €« Miss
68: 00...010 00 100 < Miss
76: 00...010 01 100 €« Miss
224: 00...111 00 000 €« Miss
36: 00...001 00 100 €« Miss
44: 00...001 01 100 <« Miss
16: 00...000 10 000 < Hit
172: 00...101 01 100 < Miss
20: 00...000 10 100 < Hit
24: 00...000 11 000 €« Miss
36: 00...001 00 100 < Hit
68: 00...010 00 100 < Miss
Valid
bit

Valid

bit Tag | Word0 | Wordl

Cache set Tag | Word0 | Wordl

Mo} | M4}

Mi64] | Mfe8} |61
M[32] | M[36]

o

O

=
[l) Sl (=]
N N K

M[64] | M[68]

2 M2} | M6}
1 01 5 |miee |mrz |91 |1 M40 | M[ad]
2 01 0 |M[16] |M[20] |81 |2 |M[80] |M[84]
3 01 0 |M[24] |M[28] |0

AY2023/24 Semester 2 -1of5- CS2100 Tutorial #11 Answers

3. Although we use only data memory as example in the cache lecture, the principle covered is
equally applicable to the instruction memory. This question takes a look at both the instruction
cache and data cache.

The code below is from Tutorial 8 Question 1 (palindrome checking) with the following variable
mappings:

low = $s0, high—> Ss1, matched = S$s3, base of string[]> $s4, size 2 Ss5

Code Comment
i0 [some instruction]
il addi $s0, $zero, O # low =0
i2 addi $sl, $s5, -1 # high = size-1
i3 addi $s3, $zero, 1 # matched = 1
loop:
i4 slt $t0, $s0, $sl # (low < high)?
i5 beq $t0, $zero, exit # exit if (low >= high)
i6 beqg $s3, $zero, exit # exit if (matched == 0)
i7 add $tl, $s4, $s0 # address of string[low]
i8 1b $t2, 0($tl) # t2 = string[low]
i9 addi $t3, $s4, S$sl # address of string[high]
ilo 1b $td, 0($t3) # t4 = string[high]
ill beq $t2, $t4, else
il2 addi $s3, $zero, O # matched = 0
il13 j endW # can be "j loop"
else:
il4 addi $s0, $s0, 1 # low++
i1l5 addi $s1, $s1, -1 # high—
endW:
ile 3j loop # end of while
exit:
il7 [some instruction]

Parts (a) to (d) assume that instruction i0 is stored at memory address 0x0.

(a) Instruction cache: Direct mapped with 2 blocks of 16 bytes each (i.e. each block can hold 4
consecutive instructions).

Starting with an empty cache, the fetching of instruction il will cause a cache miss. After the
cache miss is resolved, we now have the following instructions in the instruction cache:

Instruction Cache Block O [i0,1i1,i2,i3]

Instruction Cache Block 1 [empty]

Fetching of i2 and i3 are all cache hits as they can be found in the cache.

Assuming the string being checked is a palindrome. Show the instruction cache block
content at the end of the 1% iteration (i.e. up to instruction i16).

AY2023/24 Semester 2 -20f5- CS2100 Tutorial #11 Answers

Answer:

Instruction Cache Block O [i16,]
Instruction Cache Block 1 [i12,i13,i14, i15]

Working: Instructions executed =iltoill, i14toil6
Block #0, Cache index=0 [i0,i1,i2,i3]
Block #1, Cache index =1 [i4, i5, i6, 7]
Block #2, Cache index =0 [i8, 19, i10, i11]
Block #3, Cache index =1 [i12,i13,i14, i15]
Block #4, Cache index =0 [i16, other....]

(b) Ifthe loop is executed for a total of 10 iterations, what is the total number of cache hits (i.e.
after the 10™ "jloop" is fetched)?

Answer:

Working (1%t Iteration):

il i2 i3 i4 i5 i6 i7 i8 i9 | i10 | i11 | i14 | i15 | il6
M H H M H H H M H H H M H M

Working (2"¢ iteration onward):

i4 i5 i6 i7 i8 i9 | i10 | i11 | i14 | i15 | i16
M H H H M H H H M H M

Total hits =9 (1%t iteration) + 7x9 (remaining 9 iterations) = 72

(c) Suppose we change the instruction cache to:
e Direct mapped with 4 blocks of 8 bytes each (i.e. each block can hold 2 consecutive
instructions).

Assuming the string being checked is a palindrome. Show the instruction cache block content at
the end of the 1 iteration (i.e. up to instruction i16).

Answer:

Instruction Cache Block 0 | [il6, ...]

Instruction Cache Block 1 | [i10, i11]

Instruction Cache Block 2 | [i4, i5]
Instruction Cache Block 3 | [i14, i15]

AY2023/24 Semester 2 -30f5- CS2100 Tutorial #11 Answers

Working:

(d)

First, find out the block information for the full code:

Block #0, Cache index =0 [i0, i1]
Block #1, Cache index =1 [i2,i3]
Block #2, Cache index =2 [i4, i5]
Block #3, Cache index =3 [i6, 7]
Block #4, Cache index=0 [i8, 9]
Block #5, Cache index =1 [i10,i11]
Block #6, Cache index = 2 [i12, i13]
Block #7, Cache index = 3 [i14, i15]
Block #8, Cache index =0 [i16, ...]

Second, use the execution pattern to find out what is accessed, since we execute il toill
(Block #0 to Block #5) then i14 to i16 (Block #7 and Block #8), we get the final cache content
as shown. You should note that Block #6 [i12, i13] is not accessed in this particular

execution.

If the loop is executed for a total of 10 iterations, what is the total number of cache hits
(i.e. after the 10" "j loop" is fetched)?

Answer:

Working (1% Iteration):

il i2 i3 i4 i5 i6 i7 i8 i9 i10 | i11 | i14 | i15 | il1l6
M M H M H M H M H M H M H M
Working (2"¢ iteration onward):

i4 i5 i6 i7 i8 i9 |10 | i11 | i14 | i15 | i16

H H M H M H H H M H M

Total hits = 6 (1%t iteration) + 7x9 (remaining 9 iterations) = 69

Let us now turn to the study of data cache. We will assume the following scenario for parts (e) to

(8):

The string being checked is 64-character long. The first character is located at location
0x1000.

The string is a palindrome (i.e. it will go through 32 iterations of the code).

AY2023/24 Semester 2

-4 0f5-

CS2100 Tutorial #11 Answers

(e) Given a direct mapped data cache with 2 cache blocks, each block is 8 bytes, what is the
final content of the data cache at the end of the code execution (after the code failed the
beq at i5)? Use s[X..Y] to indicate the data string[X] to string[Y].

Answer:

Data Cache Block #0 s[32..39]

Data Cache Block #1 s[24..31]

Access patterns = s[0], s[63], s[1], s[62], ..., s[31], s[32]
Blocks information (blocks that can go into the same cache location are listed together):
Cacheindex =0 | s[0..7] [16..23] [32..39] [48..55]
Cacheindex =1 | s[8..15] [24..31] [40..47] [56..63]

(f) What is the hit rate of (e)? Give your answer in a fraction or a percentage correct to two
decimal places.

Answer:

Observation: the access pattern nicely alternates between Block0-Block1 and Block1-BlockO. So,
in general, other than the first miss to bring in a block, the remaining 7 accesses on the block
are all hits.

Hence, hit rate = 7/8 or 87.50%

(g) Suppose the string is now 72-character long, the first character is still located at location
0x1000 and the string is still a palindrome, what is the hit rate at the end of the execution?

Answer:

Access patterns = s[0], s[71], s[1], s[70], ..., s[35], s[36]
Blocks information (blocks that can go into the same cache location are listed together):
Cache index =0 | s[0..7] [16..23] [32..39] [48..55] [64..71]
Cacheindex =1 | s[8..15] [24..31] [40..47] [56...63]

Observation: the access pattern is either BlockO-BlockO or Block1-Blockl. So, every access is a
miss, except the last block [32..39]! This is an example of cache thrashing (you can imagine the
cache is “beaten up” pretty badly ©).

Hence, hit rate = 7/72 (the last 7 accesses on block [32..39]) or 9.72%

AY2023/24 Semester 2 -50f5- CS2100 Tutorial #11 Answers

