
AY2023/24 Semester 2 - 1 of 5 - CS2100 Tutorial #11 Answers

CS2100 Computer Organisation

Tutorial #11: Cache
(Week 13: 15 – 19 April 2024)

Answers to Selected Questions
Tutorial Questions

2. Use the series of references given in question 1 above: 4, 16, 32, 20, 80, 68, 76, 224, 36, 44, 16,
172, 20, 24, 36, and 68 in a MIPS machine. Assuming a two-way set-associative cache with two-
word blocks and a total size of 16 words that is initially empty, label each address reference as
a hit or miss and show the content of the cache. Assume LRU replacement policy.

You may write the data word starting at memory address X as M[X]. (For example, data word
starting at memory address 12 is written as M[12]. This implies that the word includes the 4
bytes of data at addresses 12, 13, 14 and 15.) You may write the tag values as decimal numbers.
If a block is replaced in the cache, cross out the corresponding content in the cache, and write
the new content over it.

 Answer:

 Since this is a MIPS machine, a word consists of 4 bytes or 32 bits.
Should first work out the tag, set index, and offset fields:

 4: 00…000 00 100 Miss

 16: 00…000 10 000 Miss

 32: 00…001 00 000 Miss

 20: 00…000 10 100 Hit

 80: 00…010 10 000 Miss

 68: 00…010 00 100 Miss

 76: 00…010 01 100 Miss

 224: 00…111 00 000 Miss

 36: 00…001 00 100 Miss

 44: 00…001 01 100 Miss

 16: 00…000 10 000 Hit

 172: 00…101 01 100 Miss

 20: 00…000 10 100 Hit

 24: 00…000 11 000 Miss

 36: 00…001 00 100 Hit

 68: 00…010 00 100 Miss

27 bits 2 bits 3

Tag Set Index Offset

Cache set
Valid

bit
Tag Word0 Word1

Valid

bit
Tag Word0 Word1

0 0 1

0

2

1

M[0]

M[64]

M[32]

M[4]

M[68]

M[36]

0 1

1

7

2

M[32]

M[224]

M[64]

M[36]

M[228]

M[68]

1 0 1
2

5

M[72]

M[168]

M[76]

M[172]
0 1 1 M[40] M[44]

2 0 1 0 M[16] M[20] 0 1 2 M[80] M[84]

3 0 1 0 M[24] M[28] 0

AY2023/24 Semester 2 - 2 of 5 - CS2100 Tutorial #11 Answers

3. Although we use only data memory as example in the cache lecture, the principle covered is
equally applicable to the instruction memory. This question takes a look at both the instruction
cache and data cache.

 The code below is from Tutorial 8 Question 1 (palindrome checking) with the following variable
mappings:

low $s0, high $s1, matched $s3, base of string[] $s4, size $s5

Code Comment

i0

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

i15

i16

i17

 [some instruction]

 addi $s0, $zero, 0

 addi $s1, $s5, -1

 addi $s3, $zero, 1

loop:

 slt $t0, $s0, $s1

 beq $t0, $zero, exit

 beq $s3, $zero, exit

 add $t1, $s4, $s0

 lb $t2, 0($t1)

 addi $t3, $s4, $s1

 lb $t4, 0($t3)

 beq $t2, $t4, else

 addi $s3, $zero, 0

 j endW

else:

 addi $s0, $s0, 1

 addi $s1, $s1, -1

endW:

 j loop

exit:

 [some instruction]

low = 0

high = size-1

matched = 1

(low < high)?

exit if (low >= high)

exit if (matched == 0)

address of string[low]

t2 = string[low]

address of string[high]

t4 = string[high]

matched = 0

can be "j loop"

low++

high—

end of while

Parts (a) to (d) assume that instruction i0 is stored at memory address 0x0.

(a) Instruction cache: Direct mapped with 2 blocks of 16 bytes each (i.e. each block can hold 4
consecutive instructions).

Starting with an empty cache, the fetching of instruction i1 will cause a cache miss. After the
cache miss is resolved, we now have the following instructions in the instruction cache:

Instruction Cache Block 0 [i0, i1, i2, i3]

Instruction Cache Block 1 [empty]

Fetching of i2 and i3 are all cache hits as they can be found in the cache.

Assuming the string being checked is a palindrome. Show the instruction cache block
content at the end of the 1st iteration (i.e. up to instruction i16).

AY2023/24 Semester 2 - 3 of 5 - CS2100 Tutorial #11 Answers

 Answer:

Instruction Cache Block 0 [i16, ……..]

Instruction Cache Block 1 [i12, i13, i14, i15]

 Working: Instructions executed = i1 to i11, i14 to i16

Block #0, Cache index = 0 [i0, i1, i2, i3]

Block #1, Cache index = 1 [i4, i5, i6, i7]

Block #2, Cache index = 0 [i8, i9, i10, i11]

Block #3, Cache index = 1 [i12, i13, i14, i15]

Block #4, Cache index = 0 [i16, other….]

(b) If the loop is executed for a total of 10 iterations, what is the total number of cache hits (i.e.
after the 10th "j loop" is fetched)?

 Answer:

 Working (1st Iteration):

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i14 i15 i16

M H H M H H H M H H H M H M

 Working (2nd iteration onward):

i4 i5 i6 i7 i8 i9 i10 i11 i14 i15 i16

M H H H M H H H M H M

Total hits = 9 (1st iteration) + 79 (remaining 9 iterations) = 72

(c) Suppose we change the instruction cache to:

 Direct mapped with 4 blocks of 8 bytes each (i.e. each block can hold 2 consecutive
instructions).

Assuming the string being checked is a palindrome. Show the instruction cache block content at
the end of the 1st iteration (i.e. up to instruction i16).

 Answer:

Instruction Cache Block 0 [i16, …]

Instruction Cache Block 1 [i10, i11]

Instruction Cache Block 2 [i4, i5]

Instruction Cache Block 3 [i14, i15]

AY2023/24 Semester 2 - 4 of 5 - CS2100 Tutorial #11 Answers

 Working:

 First, find out the block information for the full code:

Block #0, Cache index = 0 [i0, i1]

Block #1, Cache index = 1 [i2, i3]

Block #2, Cache index = 2 [i4, i5]

Block #3, Cache index = 3 [i6, i7]

Block #4, Cache index = 0 [i8, i9]

Block #5, Cache index = 1 [i10, i11]

Block #6, Cache index = 2 [i12, i13]

Block #7, Cache index = 3 [i14, i15]

Block #8, Cache index = 0 [i16, …]

 Second, use the execution pattern to find out what is accessed, since we execute i1 to i11

(Block #0 to Block #5) then i14 to i16 (Block #7 and Block #8), we get the final cache content
as shown. You should note that Block #6 [i12, i13] is not accessed in this particular
execution.

(d) If the loop is executed for a total of 10 iterations, what is the total number of cache hits
(i.e. after the 10th "j loop" is fetched)?

 Answer:

 Working (1st Iteration):

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i14 i15 i16

M M H M H M H M H M H M H M

 Working (2nd iteration onward):

i4 i5 i6 i7 i8 i9 i10 i11 i14 i15 i16

H H M H M H H H M H M

 Total hits = 6 (1st iteration) + 79 (remaining 9 iterations) = 69

Let us now turn to the study of data cache. We will assume the following scenario for parts (e) to
(g):

 The string being checked is 64-character long. The first character is located at location
0x1000.

 The string is a palindrome (i.e. it will go through 32 iterations of the code).

AY2023/24 Semester 2 - 5 of 5 - CS2100 Tutorial #11 Answers

(e) Given a direct mapped data cache with 2 cache blocks, each block is 8 bytes, what is the
final content of the data cache at the end of the code execution (after the code failed the
beq at i5)? Use s[X..Y] to indicate the data string[X] to string[Y].

Answer:

Data Cache Block #0 s[32..39]

Data Cache Block #1 s[24..31]

 Access patterns = s[0], s[63], s[1], s[62], …, s[31], s[32]

 Blocks information (blocks that can go into the same cache location are listed together):

Cache index = 0 s[0..7] [16..23] [32..39] [48..55]

Cache index = 1 s[8..15] [24..31] [40..47] [56..63]

(f) What is the hit rate of (e)? Give your answer in a fraction or a percentage correct to two
decimal places.

 Answer:

 Observation: the access pattern nicely alternates between Block0-Block1 and Block1-Block0. So,
in general, other than the first miss to bring in a block, the remaining 7 accesses on the block
are all hits.

 Hence, hit rate = 7/8 or 87.50%

(g) Suppose the string is now 72-character long, the first character is still located at location
0x1000 and the string is still a palindrome, what is the hit rate at the end of the execution?

 Answer:

 Access patterns = s[0], s[71], s[1], s[70], …, s[35], s[36]

 Blocks information (blocks that can go into the same cache location are listed together):

Cache index = 0 s[0..7] [16..23] [32..39] [48..55] [64..71]

Cache index = 1 s[8..15] [24..31] [40..47] [56…63]

 Observation: the access pattern is either Block0-Block0 or Block1-Block1. So, every access is a

miss, except the last block [32..39]! This is an example of cache thrashing (you can imagine the
cache is “beaten up” pretty badly).

 Hence, hit rate = 7/72 (the last 7 accesses on block [32..39]) or 9.72%

