Exploration: C to MIPS

CS$2100 Computer Organization

Tutorial #2: C and MIPS

Go to this website https://godbolt.org/ and copy the C code below into the left box, and ensure

that you choose “C” in the dropdown list (circled green), and choose “mips (el) gcc 5.4” or “mips
gcc 5.4” in the dropdown list (circled red). (Do not choose “mips64 gcc 5.4”.)

int main(void) {

int a, b, c;
a = 3;
b=25;
c =a+ b;
return O;
€ c 25 godbolt.org * [} o ‘t
=, EXPLORER Add-7 M t | seensorsjnte]. Google sonarcloud : Policies @)
Csource #1 2 X o oS aldans 2 (Editor #1) 2 X =
A~ B +- v 2 v @ @ Compiler options.. '
1 /* Type your code here, or load an example. */ A~ ®Output.~ VFilter.~ BLibraries 4 Overrides =+ Addnew..> 4”Add tool..~
2 int main(void) { —
i 1 $LFBO = .
3 int a, b, c; -
4 2 main:
5 a=3; addiu $sp,$sp,-32
6 b=5; 4 sw $fp,28($sp)
et k]
7 c=a+b; Ll s move $fp,$sp
8 return ©; 6 1i $2,3 # ox3
° } % sw $2,8(3fp)
i 8 1i $2,5 # oxs
1 sw $2,12($fp)
1e 1w $3,8(%fp)
11 1w $2,12($fp)
12 nop
13 addu $2,$3,%2
14 sw $2,16($fp)
a5 move $2,%0
16 move $sp, $fp
17 1w $fp,28($sp)
18 addiu $sp,$sp,32
19 j $31
20 nop
C HEOutput (0/0) mips (el) gcc 54 § - 1719ms (32678) ~191 lines fitered |£ Compiler License

This is just for your exploration.

We cover sw, Ilw and j in class. Some of the MIPS instructions such as addiu and addu shown above
are not covered; instead, we cover add and addi. The nop instruction will be mentioned in the topic
on Pipelining later. move and li are pseudo-instructions. In general, we do not use pseudo-
instructions, except for li and la which you will learn in your labs.

You will use QTSpim, a MIPS simulator, for your labs later.

AY2025/26 Semester 2

-lof4-

CS2100 Tutorial #2

Self-Check (these will not be covered in tutorials. You may discuss this on Canvas or QnA if you have
any queries):

For each of the following instructions, indicate if it is valid or not (refer to the comment for the
intention). If not, explain why and suggest a correction. Note that the “|” in the comment in (d) is
the bitwise OR operation.

Note: Ox indicates hexadecimal value; Ob indicates binary value. Examples: Ox12 = 1810; 0b1101 =
1310.

a. add $tl, $t2, $t3 # St3 = St1 + St2

b. addi $tl, $0, 0x25 #$t1 =37

c. subi $t2, $tl, 3 #St2=5t1-3

d. ori $t3, $t4, O0xAC120000 # St3=St4 | 0xAC120000

e. sl1 $t5, $t2, O0x21 # shift left St2 33 bits and store in $t5

Tutorial questions:

1. C bitwise operations
Find out about the following bitwise operations in C.

= | (bitwise OR)

= & (bitwise AND)

» A (bitwise XOR)

= ~ (one’s complement)
= << (left shift)

= >> (right shift)

Using the following C program as a template, illustrate the above bitwise operations with your
own examples. Note that variables of the data type char take up one byte (8 bits) of memory.

#include <stdio.h>
typedef unsigned char byte t;
void printByte (byte t);

int main(void) {
byte t a, b;

a=25;

b = 22;

printf ("a = "), printByte(a); printf ("\n") ;
printf ("b = "); printByte(b); printf ("\n") ;
printf("alb = "); printByte(a|b); printf("\n");

return O;

}

void printByte (byte t x) {
printf ("%c%c%c%cccscse”,
(x &« Ox80 ? '1': '0"),
(x & 0x40 ? '1': '0"),
(x & 0x20 ? '1': '0"),

AY2025/26 Semester 2 -20of4- CS2100 Tutorial #2

(x & 0x10 ? '1': '0'"),

(x & Ox08 ? '1': '0"),

(x & 0x04 2 '1': '0"),

(x & 0x02 ? '1': '0"),

(x & Ox01 2 '1': '0"));
}

2. MIPS Bitwise Operations

Implement the following in MIPS assembly. Assume that integer variables a, b and c are
mapped to registers $s0, Ss1 and Ss2 respectively. Parts (a), (b), (c) are independent of one
another.

For bitwise instructions (e.g. ori, andi, etc), any immediate values you use should be written in
binary for this question. This is optional for non-bitwise instructions (e.g. addi).

Note that bit 31 is the most significant bit (MSB) on the left, and bit 0 is the least significant bit
(LSB) on the right.

(a) Set bits 2, 8,9, 14 and 16 of b to 1. Leave all other bits unchanged.
(b) Copy over bits 1, 3 and 7 of b into a, without changing any other bits of a.

(c) Make bits 2, 4 and 8 of ¢ the inverse of bits 1, 3 and 7 of b (i.e. if bit 1 of b is 0, then bit 2
of ¢ should be 1; if bit 1 of b is 1, then bit 2 of ¢ should be 0), without changing any other
bits of c.

3. MIPS Arithmetic

Write the following in MIPS Assembly, using as few instructions as possible. You may rewrite
the equations if necessary to minimize instructions.

In all parts you can assume that integer variables a, b, c and d are mapped to registers $s0, Ss1,
$s2 and $s3 respectively. Each part is independent of the others.

(a) c=a+b;

(b) d=a+b-g;

() c=2b+(a—-2);
(d) d=6a+3(b-2c);

AY2025/26 Semester 2 -30f4- CS2100 Tutorial #2

4. [AY2013/14 Semester 2 Exam]
The mysterious MIPS code below assumes that $s0 is a 31-bit binary sequence, i.e. the MSB
(most significant bit) of $s0 is assumed to be zero at the start of the code.

add $t0, $s0, $zero # make acopy of SsOin St0
lui $tl, 0x8000
lp: beq $t0, $zero, e
andi $t2, $t0, 1
beq $t2, $zero, s
xor $s0, $s0, $t1
s: srl $t0, $t0, 1
J lp

(@) For each of the following initial values in register $s0 at the beginning of the code, give the
hexadecimal value of the content in register $s0 at the end of the code.

(i) Decimal value 31.
(ii) Hexadecimal value OXOAAAAAAA.

(b) Explain the purpose of the code in one sentence.

AY2025/26 Semester 2 -4 0of 4 - CS2100 Tutorial #2

