CS2100 Computer Organization

Tutorial #3: MIPS: Arrays and Instruction Encoding

D1. Given two integer arrays A and B with unknown number of elements, and their base addresses
stored in registers $s0 and $s1 respectively, study the MIPS code below. Note that an integer
takes up 32 bits of memory.

addi
addi
loop: 1w
1w
slt
beq
SW
SW
skip: addi
addi
bne

$t0,
$t1,
$t3,
$t4,
$t5,
$t5,
$t4,
$t3,
$t0,
$t1,
$t3,

$s0, O

$s1l, O

0($t0)

0($tl1)

$t4, $t3 # line A
$zero, skip # line B
0($t0)

0($tl1)

$to0, 4

$t1, 4

$zero, loop

a. What is the purpose of register $tl in this code?

b. If arrayA={7,4,1,6,0,5,9,0}and
array B = {3I 4’ 5’ 2’ 1’ OI OI 9}[
write out the final content of these two arrays.

c. How many store word operations are performed given the contents of the arrays in part

(b)?

d. What is the value (in decimal) of the immediate field in the machine code representation of
the bne instruction?

e. The two lines indicated as “line A” and “line B” represent the translation of a MIPS pseudo-
instruction. Give the corresponding pseudo-instruction.

AY2025/26 Semester 2

-1of4- CS2100 Tutorial #3

Tutorial Questions:

1. Below is a C code that performs palindrome checking. A palindrome is a sequence of characters
that reads the same backward or forward. For example, “madam” and “rotator” are
palindromes.

char str[size] = { ... }; // some string
int lo, hi, matched;

// Translate to MIPS from this point onwards

lo = 0;
hi = size-1;
matched = 1; // assume this is a palindrome

// In C, 1 means true and 0 means false
while ((lo < hi) && matched) {
if (str[lo] !'= str[hi])
matched = 0; // found a mismatch

else {
lo++;
hi--;
}

}

// "matched" = 1 (palindrome) or 0 (not palindrome)

Given the following variable mappings:

lo =» Ss0;

hi=» Ss1;

matched =» $s3;

base address of str[] =» Ss4;
size =» $s5

(a) Translate the C code into MIPS code by keeping track of the indices.

(b) Translate the C code into MIPS code by using the idea of “array pointer”. Basically, we keep
track of the actual addresses of the elements to be accessed, rather than the indices. Refer
to lecture set #8, slide 34 for an example

Note: Recall the “short circuit” logical AND operation in C. Given condition (A && B), condition
B will not be checked if A is found to be false.

AY2025/26 Semester 2 -20of4- CS2100 Tutorial #3

2. (a) You accidentally spilled coffee on your best friend’s MIPS assembly code printout.
Fortunately, there are enough hints for you to reconstruct the code. Fill in the missing lines
(shaded cells) below to save your friendship.

Answer:

Instruction MIPS Code
Encoding

$s1 stores the result, $t0 stores a non-negative number

addi $sl, $zero, 0 #lnst. address is 0x00400028

0x00084042 | loop: srl $t0, $t0, 1

0x11000002

0x22310001

j loop

exit:

(b) Give a simple mathematic expression for the relationship between $s1 and $t0 as calculated
in the code.

3. [AY2012/13 Semester 2 Assignment 3]
Your friend Alko just learned binary search in C52040S and could not wait to impress you. As a
friendly gesture, show Alko that you can do the same, but in MIPS! ©

Complete the following MIPS code. To simplify your tasks, some instructions have already been
written for you, so you only need to fill in the missing parts in []. Please translate as close as
possible to the original code given in the comment column. You can assume registers $s0 to $s5
are properly initialized to the correct values before the code below.

(a)

Variable Mappings ‘ Comments
address of array[] = $s0

target = Ssl // value to look for in array

lo=>» Ss2 // lower bound of the subarray
hi =» Ss3 // upper bound of the subarray
mid = Ss4 // middle index of the subarray
ans =» $s5 // index of the target if found, -1 otherwise. Initialized to -1.

AY2025/26 Semester 2 -30f4- CS2100 Tutorial #3

loop:
slt $t9, $s3, $s2
_....bne $t9, Szero, end
add $s4, S$s2, $s3
[1
sll $t0, $s4, 2
add $t0, $s0, $tO
_______ oY
slt $t9, $sl1, Stl
beq $t9, $zero, bigger
addi $s3, $s4, -1
j loopEnd
‘bigger:
[1
_______ oY
addi $s2, S$s4, 1
J loopEnd
equal:
add $s5, S$s4, Szero
[1
loopEnd
[1
end

#while (lo <= hi) {
mid = (lo + hi)/ 2
t0 = mid*4]
t0 = &array[mid] in bytes
o tl = array(midl]
if (target < array[mid])
hi = mid - 1
else if (target > array[mid])
lo = mid + 1
¥ else {
ans = mid
break
oy]
#} //end of while-loop

(b) What is the immediate value in decimal for the "bne $t9, $zero, end" instruction?
You should count only the instructions; labels are not included in the machine code.

(c) If the first instruction is placed in memory address at OxFFFFFFOO, what is the hexadecimal
representation of the instruction "j loopEnd" (for "high = mid —1")?

(d) Is the encoding for the second "j loopEnd" different from part (c)? If yes, give the new
encoding, otherwise briefly explain the reason.

AY2025/26 Semester 2

-4 0of 4 - CS2100 Tutorial #3

