
AY2025/26 Semester 2  - 1 of 4 - CS2100 Tutorial #3 

CS2100 Computer Organization 
Tutorial #3: MIPS: Arrays and Instruction Encoding 

 
 

D1. Given two integer arrays A and B with unknown number of elements, and their base addresses 
stored in registers $s0 and $s1 respectively, study the MIPS code below. Note that an integer 
takes up 32 bits of memory. 

      addi $t0, $s0, 0 
      addi $t1, $s1, 0 
loop: lw   $t3, 0($t0) 
      lw   $t4, 0($t1) 
      slt  $t5, $t4, $t3      # line A 
      beq  $t5, $zero, skip   # line B 
      sw   $t4, 0($t0) 
      sw   $t3, 0($t1) 
skip: addi $t0, $t0, 4 
      addi $t1, $t1, 4 
      bne  $t3, $zero, loop 

 
a. What is the purpose of register $t1 in this code?  

 
b. If array A = {7, 4, 1, 6, 0, 5, 9, 0} and  
         array B = {3, 4, 5, 2, 1, 0, 0, 9}, 
    write out the final content of these two arrays.                                                     

 
c. How many store word operations are performed given the contents of the arrays in part 

(b)?                                                     
 

d. What is the value (in decimal) of the immediate field in the machine code representation of 
the bne instruction?  

 
e. The two lines indicated as “line A” and “line B” represent the translation of a MIPS pseudo-

instruction. Give the corresponding pseudo-instruction.  
 
  



AY2025/26 Semester 2  - 2 of 4 - CS2100 Tutorial #3 

Tutorial Questions: 

1.  Below is a C code that performs palindrome checking. A palindrome is a sequence of characters 
that reads the same backward or forward. For example, “madam” and “rotator” are 
palindromes. 

char str[size] = { ... }; // some string 
int lo, hi, matched; 
 
// Translate to MIPS from this point onwards 
lo = 0; 
hi = size-1; 
matched = 1; // assume this is a palindrome 
   // In C, 1 means true and 0 means false 
while ((lo < hi) && matched) { 
 if (str[lo] != str[hi]) 
  matched = 0; // found a mismatch 
 else { 
  lo++; 
  hi--; 
 }          
} 
// "matched" = 1 (palindrome) or 0 (not palindrome) 

 
Given the following variable mappings: 

 lo è $s0;  
 hiè $s1;  
 matched è $s3;  
 base address of str[] è $s4;  
 size è $s5 

(a) Translate the C code into MIPS code by keeping track of the indices. 

(b) Translate the C code into MIPS code by using the idea of “array pointer”. Basically, we keep 
track of the actual addresses of the elements to be accessed, rather than the indices. Refer 
to lecture set #8, slide 34 for an example 

 
Note: Recall the “short circuit” logical AND operation in C. Given condition (A && B), condition 

B will not be checked if A is found to be false. 
 

	  



AY2025/26 Semester 2  - 3 of 4 - CS2100 Tutorial #3 

2. (a) You accidentally spilled coffee on your best friend’s MIPS assembly code printout. 
Fortunately, there are enough hints for you to reconstruct the code. Fill in the missing lines 
(shaded cells) below to save your friendship. 

 Answer: 

Instruction 
Encoding 

MIPS Code 

 # $s1 stores the result, $t0 stores a non-negative number 

       addi $s1, $zero, 0 #Inst. address is 0x00400028  

0x00084042   loop: srl $t0, $t0, 1                    

0x11000002        

0x22310001        

       j loop 

 exit: 

  

 (b) Give a simple mathematic expression for the relationship between $s1 and $t0 as calculated 
in the code.                                                                                                       

 
 
 
 
3.  [AY2012/13 Semester 2 Assignment 3] 

Your friend Alko just learned binary search in CS2040S and could not wait to impress you. As a 
friendly gesture, show Alko that you can do the same, but in MIPS! J 

Complete the following MIPS code. To simplify your tasks, some instructions have already been 
written for you, so you only need to fill in the missing parts in [ ]. Please translate as close as 
possible to the original code given in the comment column. You can assume registers $s0 to $s5 
are properly initialized to the correct values before the code below.  
 
(a) 

Variable Mappings Comments 
address of array[] è $s0               
target è $s1 // value to look for in array 
lo è $s2     // lower bound of the subarray 
hi è $s3    // upper bound of the subarray 
mid è $s4     // middle index of the subarray 
ans è $s5    // index of the target if found, -1 otherwise. Initialized to -1. 



AY2025/26 Semester 2  - 4 of 4 - CS2100 Tutorial #3 

loop: 
   slt $t9, $s3, $s2    
   bne $t9, $zero, end 

#while (lo <= hi) { 

   add $s4, $s2, $s3            
   [                    ] #   mid = (lo + hi)/ 2 

   sll $t0, $s4, 2              
   add $t0, $s0, $t0        
   [                    ] 

#   t0 = mid*4 
#   t0 = &array[mid] in bytes 
#   t1 = array[mid] 

   slt $t9, $s1, $t1        
   beq $t9, $zero, bigger   #   if (target < array[mid]) 

   addi $s3, $s4, -1  
   j loopEnd #      hi = mid – 1 

bigger: 
   [                    ] 
   [                    ] 

#   else if (target > array[mid]) 

   addi $s2, $s4, 1 
j l   j loopEnd #      lo = mid + 1 

equal: 
 add $s5, $s4, $zero 
 [                    ] 

#   else { 
       ans = mid 
       break 
#   } 

loopEnd: 
   [                    ] #} //end of while-loop 

end:  

 
(b) What is the immediate value in decimal for the "bne $t9, $zero, end" instruction?  

You should count only the instructions; labels are not included in the machine code. 
 
(c) If the first instruction is placed in memory address at 0xFFFFFF00, what is the hexadecimal 

representation of the instruction "j loopEnd" (for "high = mid – 1")?  
 
(d) Is the encoding for the second "j loopEnd" different from part (c)? If yes, give the new 

encoding, otherwise briefly explain the reason.  
 

 
 


