
 CS2103/T

1

NATIONAL UNIVERSITY OF SINGAPORE

CS2103/T – SOFTWARE ENGINEERING

(Semester 2 AY2014/2015)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Answer ALL questions within the space in this booklet.
2. This is an OPEN BOOK assessment.

 STUDENT NO: ___________________________________

This portion is for examiner’s use only

Question Marks Remarks

Q1 /7

Q2 /10

Q3 /11

Q4 /8

Q5 /4

Total /40

 CS2103/T

2

[Examiner comments]
 Do not take example answers given here as ‘the only right answer'. In most cases it is

possible to get full marks even if your answer differs from the example given.
 The project used in this paper is slightly harder and slightly different than the project done

during the semester.
 This assessment paper does not cover project management and implementation. Those

aspects were covered using CA.

The problem description used for all questions in this assessment paper is given in the
appendices (last two pages of this assessment paper).

Q1 [5+2=7 marks]:
Please read Appendix A of the problem description. When answering this question, you may
consider the requirements specified in the problem description as well as requirements that you
would like to add. Assume that you have categorized PointTracker user stories into categories
must-have, nice-to-have, and unlikely-to-have.

a) Give one nice-to-have user story for each of the four most important user types. Three user
types to include are Lecturer, Tutor, and Student. You may decide the fourth user type.

[Examiner comments]
Areas tested by this question: Functional requirements, product design

Answers should be nice-to-have user stories, not must-have ones. For example, ‘tutor can edit
points’ is a must-have user story because without it the system becomes impractical to use.
User stories should be written in correct format and at least some should mention the benefit.
The 4th user type should be one of the important ones, for example, Admin.

Some examples:

1. As the lecturer, I can see how many times a tutor did not submit points on time so that I
can identify tutors who are habitually late in submitting points.

2. As a tutor, I can get notifications of upcoming point submission deadlines so that it reduces
the risk of me missing a deadline.

3. As a student, I receive updates to my points in email so that I don’t have to remember to
check my points.

4. As an admin, I can reuse past data when creating accounts so that it is easier for me to
create accounts for returning tutors/instructors.

b) Give a non-functional requirement for PointTracker. Choose a requirement that is more

specific to PointTracker, as opposed to a requirement that is applicable to most other
software.

[Examiner comments]
Areas tested by this question: Non-functional requirements.
An example:

 The user should have logged into the computer before the desktop application is activated.
Common mistakes:

 Giving a functional requirement when the question requires a non-functional requirement.
 The given answer is not specific enough to the PointTracker system. E.g. good usability is a

non-functional requirement but it is not specific to the PointTracker.

 CS2103/T

3

Q2 [2+8=10 marks]:
(a) Consider the two architecture choices given in Appendix B. Which one is better? Justify your
answer.
[Examiner comments]
Areas tested by this question: Architecture, design quality

The answer should reference concepts related to design quality such as coupling and cohesion.
Example answer:
Choice B is better because in that design the Parser does not deal with executing the command
and therefore more cohesive (it does parsing only) and not coupled to the Logic component.

Common mistakes:

 No justification given or the justification does not reference relevant concepts.

(b) Assume that when a tutor runs the PointTracker executable, it initializes the components,
downloads the relevant data from the remote server, and shows the student list of the class.
Use suitable UML diagram(s) to explain the interactions between architectural components
required during that scenario. Remember to include the API functions taking part in the
interactions.

[Examiner comments]
Areas tested by this question: API design, Sequence diagrams
An example:

:UI

:Logic

d:Data

:Connector

getData(username, password)

d

getStudentList()
getStudentList()

Show student list

List<Student>List<Student>

:Remote
Server

data in text format

getData()

Common mistakes:
 Not using a sequence diagram (Out of the UML diagrams we have covered, Sequence

 CS2103/T

4

diagrams is the most suitable to illustrate interactions between components for a specific
scenario).

 Incorrect sequence diagram notations
 Sequence diagram not drawn at architecture level or does not match one of the two

architectures given
 Not showing object construction in the sequence diagram
 Not showing the getData(username, password) function in the diagram

Q3 [8+3=11marks] (a) Use suitable UML diagrams to propose an object-oriented design for the
Data component. Include navigabilities, multiplicities, association roles/labels etc. when they add
value to the diagram. Methods and attribute details need not be shown. Your design should
include the following class.

Assessment: An object of this class represents the assessment by a tutor for a specific
tutorial task for a specific team.

[Examiner comments]
Areas tested by this question: OOP, class diagrams
An example:

<
<

fa
ça

d
e

>
>

D
a

ta

TutorialSlot

*

Data

Tutor
*

Person

1

Assessment

2..5

*

Team

Student

Task
1

11

*

*

*

*

1

*

*

Lecturer
*

Common mistakes:

 Not using a class diagram. Some drew a domain model instead.
 Showing unnecessary associations. For example, the ‘Lecturer publishes Assessment’

association (shown in the diagram below) should not be included unless PointTracker is
intended to track which Lecturer published which Assessment.

Lecturer Assessment
publishes

Keep in mind that class diagrams are structure diagrams. They show structural
relationships between objects, not how objects behave. Of course most structural
relationships are results of certain behaviors. For example, ‘a tutor grades a team for a
specific task’ is a behavior but it results in structural links between Tutor, Team, Task, and
Assessment objects because we need to keep track of which tutor gave how many points to

 CS2103/T

5

which team for which task.
 Not following the correct class diagram notation.
 Not including the Assessment class or not showing how Assessment is associated with

Team, Tutor, and Task classes. These associations are required because the question
mentions that Assessment class represents the assessment by a tutor for a specific tutorial
task for a specific team.

 Not showing the entire component (Some drew only the classes mentioned in the
question).

 Not showing important multiplicities and navigabilities.

(b) Consider the sample data given in Appendix C and your proposed design above. Use a suitable
UML diagram to show the object structure in the Data component for the given sample data.

[Examiner comments]
Areas tested by this question: object diagrams
An example:

:D
a

ta

:TutorialSlot

tutor2:Tutor

:Assessment

team1:Team

s1:Student

task1:Task

points:5

s2:Student

tutor1:Tutor

Common mistakes:

 Not using an object diagram
 Not using the correct object diagram notation e.g. underline missing from the class/object

names.
 The diagram does not match with the data given
 The diagram does not match with the class diagram in part (a)
 The diagram does not capture the data item ‘5 points’
 Showing the parent class Person in the object diagram as a separate object.

 CS2103/T

6

Q4 [3+5=8 marks]:
(a) Consider testing of the assignPoints function given in Appendix D. Give equivalence partitions
for each parameter.
[Examiner comments]
Areas tested by this question: test case design heuristics
An example:

Parameter Equivalence partitions

teamID

{belongs to a team in the class}
{not a team in the class/ everything else}

tutorUsername

{belongs to a tutor in the class, assessing the team}
{belongs to a tutor in the class, but not assessing the team}
{everything else}

points

{less than 0}
{0..10}
{more than 10}

Other possible equivalence partitions: empty string, null, a user id of a student/lecturer
Common mistakes:

 Not including the valid data partition. For example, some forgot to include the {0..10}
partition.

 Giving boundary values instead of describing the partition.

(b) Assume you have been asked to unit test the assignPoints function and the software has been
loaded with the sample data given in Appendix C. Add 7 more unit tests to the example given. Try
to maximize the efficiency and effectiveness of testing when you design the test cases.
[Examiner comments]
Areas tested by this question: test case design heuristics
An example:

teamID tutorUsername points expected

1 team1 tutor1 5 true

2 Any non-existing Any existing
Any valid

value
false

3 Any existing Any non-existing
Any valid

value
false

4 team1 tutor2
Any valid

value
false

5 team1 tutor1 -1 false

6 team1 tutor1 11 false

7 team1 tutor1 0 true

8 team1 tutor1 10 true

Common mistakes:
 Missing important boundary values -1, 0, 10, 11

 CS2103/T

7

 Combining multiple invalid values in a test case. For example, {team1, tutor2, 11}
contains two invalid values because tutor2 is not assigned to team1.

 Giving infinity as a test input. Integer data type cannot have infinity as an input.

Q5 [4 marks]:
Now, assume there is a need for the Data component to notify the Connector component when
there is a change to the data, without adding a direct dependency from Data component to the
Connector. Illustrate a way to achieve that using appropriate diagrams.
Hint: Use a suitable design pattern.

[Examiner comments]
Areas tested by this question: design patterns
The expected answer is ‘Observer pattern’. To get full marks, the answer should have contained
an illustration of how the pattern is to be applied.

An example (outline only):

<<interface>>
Observer

Some class in Connector

update()

Some class In Data

addObserver(Observer)

Data

Connector
update()

Common mistakes:

 Giving Façade pattern as the answer. Façade pattern is useful for hiding the internal
structure of a component from the clients of that component. Clients still depend on the
component that uses the Façade pattern. With the observer pattern, clients can
communicate with the component without having a direct dependency on it.

--- End of Paper---

 CS2103/T

8

Given below is the problem description used for all questions in this assessment paper.
You may detach this page from the assessment paper. There is no need to submit this page.

Appendix A: PointTracker product description

Your team has been asked to build a software application called PointTracker to keep track of
CS2103 participation points. It has a desktop application and a remote server. Here is the
expected behavior of PointTracker.

1. Users access PointTracker using the desktop
application. The remote server does not have a
user interface.

2. PointTracker desktop application has a GUI and a
Command Line Interface (CLI).

3. Tutors use the PointTracker desktop application to enter participation points students
earned for each tutorial task. After the lecturer publishes the points for a particular tutorial
task, students can use the PointTracker desktop application to view their points.

4. PointTracker desktop application does not store data locally (i.e. in the user’s Computer).
Instead, it connects to the PointTracker remote server to read/write data.

5. Authentication to the remote server is done using the login credentials the user used to log
in to the computer. PointTracker picks up the username and password from the Operating
System. There is no need for the user to type in username and password when using
PointTracker.

6. The proposed PointTracker system has the following simplifications:
a. It deals with data of the current semester only. Data of the past semesters are

deleted at the end of the semester.
b. It deals with team-based tutorial tasks only. It will not deal with individual tutorial

tasks.
c. The tutor allocation can change over time. A tutor may assess a different set of

teams each week. However, each team (comprising 2 to 5 members) is allocated a
tutorial slot (e.g. Wed 9am) which does not change for the entire semester.

d. PointTracker keeps track of which tutor gave how many points to which tutorial
task of which team.

GUI

CLI

 CS2103/T

9

Appendix B: Architecture choices

Given below are two architecture choices for PointTracker. The difference is in how the Parser
component is connected.

Logic DataUI

Pa
rs

er

Connector

Remote
server

(A)

Logic DataUI

Parser

Connector

(B) Remote
server

An overview of the components is given below. It applies to both diagrams.

 Parser : Parses the CLI commands typed by the user
 Data : The in-memory container for objects representing PointTracker data. E.g. Tutors,

Students, Tutorial Tasks, Assessments, etc.
 Remote Server: Represents an online server that stores PointTracker data. It is accessed by

PointTracker using a remote API, which includes the following function.
getData(username, password): String
Returns all relevant data of the user in a String format (e.g. XML or JSON) if the
username and the password are correct.

 Connector: Handles the connection with the remote server API.
 UI, Logic: As the names suggest.

Appendix C: Sample data

Given below are a set of sample data that exists in PointTracker at a particular point of time.
 Usernames of the tutors in the class: tutor1, tutor2

 Usernames of the students in team1: s1, s2

 tutor1 gave 5 points for task1 for team1

Appendix D: Testing the assignPoints function

assignPoints(string teamID, string tutorUsername, int points):boolean
Returns true if all the following conditions are true.

 teamID belongs to a team in the class

 tutorUsername belongs to a tutor of the class

 points are in the range 0..10 (both inclusive)

 tutor indicated by the tutorUsername is assigned to assess the team indicated by teamID

-- End of problem description--

