
 CS2103/T

1

NATIONAL UNIVERSITY OF SINGAPORE

CS2103/T – SOFTWARE ENGINEERING
(Semester 2 AY2014/2015)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Please write your Student Number only. Do not write your name.
2. This assessment paper contains FIVE questions and comprises TEN printed pages.
3. Answer ALL questions within the space in this booklet.
4. This is an OPEN BOOK assessment.

 STUDENT NO: ___________________________________

This portion is for examiner’s use only

Question Marks Remarks
Q1 /7
Q2 /10
Q3 /11
Q4 /8
Q5 /4
Total /40

 CS2103/T

2

The problem description used for all questions in this assessment paper is given in the
appendices (last two pages of this assessment paper).

Q1 [5+2=7 marks]:
Please read Appendix A of the problem description. When answering this question, you may
consider the requirements specified in the problem description as well as requirements that you
would like to add. Assume that you have categorized PointTracker user stories into categories
must-have, nice-to-have, and unlikely-to-have.

a) Give one nice-to-have user story for each of the four most important user types. Three user
types to include are Lecturer, Tutor, and Student. You may decide the fourth user type.

b) Give a non-functional requirement for PointTracker. Choose a requirement that is more
specific to PointTracker, as opposed to a requirement that is applicable to most other
software.

 CS2103/T

3

Q2 [2+8=10 marks]:
(a) Consider the two architecture choices given in Appendix B. Which one is better? Justify your
answer.

(b) Assume that when a tutor runs the PointTracker executable, it initializes the components,
downloads the relevant data from the remote server, and shows the student list of the class.
Use suitable UML diagram(s) to explain the interactions between architectural components
required during that scenario. Remember to include the API functions taking part in the
interactions.

 CS2103/T

4

Q3 [8+3=11marks] (a) Use suitable UML diagrams to propose an object-oriented design for the
Data component. Include navigabilities, multiplicities, association roles/labels etc. when they add
value to the diagram. Methods and attribute details need not be shown. Your design should
include the following class.

Assessment: An object of this class represents the assessment by a tutor for a specific
tutorial task for a specific team.

(b) Consider the sample data given in Appendix C and your proposed design above. Use a suitable
UML diagram to show the object structure in the Data component for the given sample data.

 CS2103/T

5

Q4 [3+5=8 marks]:
(a) Consider testing of the assignPoints function given in Appendix D. Give equivalence partitions
for each parameter.

Parameter Equivalence partitions

teamID

{belongs to a team in the class}

tutorUsername

points

(b) Assume you have been asked to unit test the assignPoints function and the software has been
loaded with the sample data given in Appendix C. Add 7 more unit tests to the example given. Try
to maximize the efficiency and effectiveness of testing when you design the test cases.

teamID tutorUsername points expected

1 team1 tutor1 5 true

2

3

4

5

6

7

8

 CS2103/T

6

Q5 [4 marks]:
Now, assume there is a need for the Data component to notify the Connector component when
there is a change to the data, without adding a direct dependency from Data component to the
Connector. Illustrate a way to achieve that using appropriate diagrams.
Hint: Use a suitable design pattern.

 CS2103/T

7

---Use this page if you need extra space for any of the questions---

 CS2103/T

8

---Use this page if you need extra space for any of the questions---

--- End of Paper---

 CS2103/T

9

Given below is the problem description used for all questions in this assessment paper.
You may detach this page from the assessment paper. There is no need to submit this page.

Appendix A: PointTracker product description

Your team has been asked to build a software application called PointTracker to keep track of
CS2103 participation points. It has a desktop application and a remote server. Here is the
expected behavior of PointTracker.

1. Users access PointTracker using the desktop
application. The remote server does not have a
user interface.

2. PointTracker desktop application has a GUI and a
Command Line Interface (CLI).

3. Tutors use the PointTracker desktop application to enter participation points students
earned for each tutorial task. After the lecturer publishes the points for a particular tutorial
task, students can use the PointTracker desktop application to view their points.

4. PointTracker desktop application does not store data locally (i.e. in the user’s Computer).
Instead, it connects to the PointTracker remote server to read/write data.

5. Authentication to the remote server is done using the login credentials the user used to log
in to the computer. PointTracker picks up the username and password from the Operating
System. There is no need for the user to type in username and password when using
PointTracker.

6. The proposed PointTracker system has the following simplifications:
a. It deals with data of the current semester only. Data of the past semesters are

deleted at the end of the semester.
b. It deals with team-based tutorial tasks only. It will not deal with individual tutorial

tasks.
c. The tutor allocation can change over time. A tutor may assess a different set of

teams each week. However, each team (comprising 2 to 5 members) is allocated a
tutorial slot (e.g. Wed 9am) which does not change for the entire semester.

d. PointTracker keeps track of which tutor gave how many points to which tutorial
task of which team.

GUI

CLI

 CS2103/T

10

Appendix B: Architecture choices
Given below are two architecture choices for PointTracker. The difference is in how the Parser
component is connected.

Logic DataUI

Pa
rs

er

Connector

Remote
server

(A)

Logic DataUI

Parser

Connector

(B) Remote
server

An overview of the components is given below. It applies to both diagrams.

• Parser : Parses the CLI commands typed by the user
• Data : The in-memory container for objects representing PointTracker data. E.g. Tutors,

Students, Tutorial Tasks, Assessments, etc.
• Remote Server: Represents an online server that stores PointTracker data. It is accessed by

PointTracker using a remote API, which includes the following function.
getData(username, password): String
Returns all relevant data of the user in a String format (e.g. XML or JSON) if the
username and the password are correct.

• Connector: Handles the connection with the remote server API.
• UI, Logic: As the names suggest.

Appendix C: Sample data
Given below are a set of sample data that exists in PointTracker at a particular point of time.

• Usernames of the tutors in the class: tutor1, tutor2
• Usernames of the students in team1: s1, s2
• tutor1 gave 5 points for task1 for team1

Appendix D: Testing the assignPoints function
assignPoints(string teamID, string tutorUsername, int points):boolean
Returns true if all the following conditions are true.

• teamID belongs to a team in the class
• tutorUsername belongs to a tutor of the class
• points are in the range 0..10 (both inclusive)
• tutor indicated by the tutorUsername is assigned to assess the team indicated by teamID

-- End of problem description--

	NATIONAL UNIVERSITY OF SINGAPORE
	Appendix A: PointTracker product description
	Appendix B: Architecture choices
	Appendix C: Sample data
	Appendix D: Testing the assignPoints function

