
 CS2103/T

1

NATIONAL UNIVERSITY OF SINGAPORE

CS2103/T – SOFTWARE ENGINEERING

(Semester 1: AY2015/2016)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Please write your Student Number only. Do not write your name.
2. This assessment paper contains SIX questions and comprises TEN printed pages.
3. Answer ALL questions within the space in this booklet.
4. This is an OPEN BOOK assessment.

 STUDENT NO: ___________________________________

This portion is for examiner’s use only

Question Marks Remarks

Q1 /6

Q2 /6

Q3 /5

Q4 /10

Q5 /6

Q6 /7

Total /40

 CS2103/T

2

The problem description used for all questions in this assessment paper is given in the
appendices (last two pages of this assessment paper).

Q1 [2+2+2=6 marks]:
Please read Appendix A of the problem description. When answering this question, you may
consider the requirements specified in the problem description as well as requirements that you
would like to add.

a) Assume that you have categorized CollatePlus user stories into categories must-have, nice-to-

have, and unlikely-to-have. Give one must-have and two nice-to-have user stories for
CollatePlus. All three user stories must help the user evaluate the code quality of the code
written by a student.

1. [must-have]

 2. [nice-to-have]

3. [nice-to-have]

b) Give an example of a non-functional requirement of CollatePlus that is directly related to a

functional requirement specified in your answer to part (a) above.

c) Give two extensions to the use case description given in Appendix B. Write your answer below

(not in Appendix B).

 CS2103/T

3

Q2 [4+2=6 marks]:
(a) Propose an architecture for CollatePlus. Your architecture must include the components given
in Appendix C. If your architecture contains more components (recommended), please provide a
brief overview of each component you added (similar to the descriptions given in Appendix C).

(b) Consider this extract (only two components are shown) from
another proposed architecture for CollatePlus. Comment on how
the two arrows between GUI and Logic affect the design quality.
Is it possible to remove one of them?
If yes, which one and how? If no, why?

GUI Logic

 CS2103/T

4

Q3[5 marks] Consider the use case description given in Appendix B.
Use a suitable UML diagram to explain the interactions between architectural components
required during step 5-6 only.
State (in the diagram) the API methods taking part in the interactions.

 CS2103/T

5

Q4 [7+3=10 marks] (a) Use suitable UML diagrams to propose an object-oriented design for the
Data component. Show all navigabilities and multiplicities. Try to minimize associations.
Show important attributes and important methods only (no more than 5 each).
Your design must include, but is not limited to, the classes listed in Appendix D.

(b) Consider the sample data given in Appendix E and your proposed design above. Use a suitable
UML diagram to show the object structure in the Data component for the given sample data.

 CS2103/T

6

Q5 [4+2=6 marks]:
(a) Consider the getStudents method/function in Appendix F. Use Java, C++, or pseudo code to
show how you would use i. assertions, ii. exceptions, and iii. logging in that method.
Show no more than one example of each. Only the relevant lines of the method need to be shown.

(b) If the Analyzer component consists of just one class and it is instantiated no more than once at
any time, is it OK to make all its members class-level (i.e. static)? Justify your answer.

 CS2103/T

7

Q6 [5+2=7 marks] (a) Assume you have been asked to test the getStudents method described in
Appendix F. Propose an effective and efficient set of tests cases. You may not propose more than 8
test cases.
Given below is an example test case list used for testing a different method
isCorrect(String answer) from a different software. You may follow a similar format in your answer.

answer Is question open for submission?

1 Correct answer Yes

2 Incorrect answer No

 (b) Comment on the following statement.

While 100% path coverage is very difficult to achieve, it is worthy of achieving because it
certifies the code as bug free.

 CS2103/T

8

[This page may be used if you need extra space for any of the answers]

--- End of Paper---

 CS2103/T

9

Given below is the problem description used for all questions in this assessment paper.
You may detach this page from the assessment paper. There is no need to submit this page.

Appendix A. CollatePlus product description

Your team has been asked to build a software application called CollatePlus which will be used
for analyzing text (code and documentation) written by students in CS2103 module project.

1. CollatePlus is a desktop application. It is meant to be used by CS2103 teaching team
members.

2. CollatePlus can be accessed using a GUI or a Textual UI (TUI).

3. CollatePlus downloads student data from the IVLE server and commit history from the
GitHub server. All data for the entire cohort is downloaded at once. The download is
triggered by the user. Data from GitHub comes as a single string. Data from IVLE too
comes as a single string. The data is then analyzed and converted into an object structure
that captures the information required to display data about student contributions to the
project.

4. For any student in the class, CollatePlus can show,

a. A collation of all the text segments (code and documentation) written by the
student for the project.

b. A list of all the commits made by the student in the team repo.
c. A list of all the project files modified by the student.

5. CollatePlus does not store the downloaded data in the user’s Computer.

6. While multiple students may have modified a text segment, only one student may claim the
authorship of a text segment. The author of a text segment is indicated using specially-
formatted comments, similar to how you did it in your module project.
Some segments may not be claimed by any student (e.g. code reused from elsewhere).

7. Some configuration data (e.g. login credentials of the user for IVLE/GitHub, mapping from
matric number to github user ID, etc.) are to be put in a file named config.txt. The user is
expected to create that file manually, following a specific format. CollatePlus reads that file
at startup.

Appendix B. An example use case description

Use case: View text written by a student
Actors: Lecturer

1. Lecturer launches the Text UI version of the app.
2. App prompts the Lecturer to enter a command.
3. Lecturer enters the command to download data from servers.
4. CollatePlus downloads data from GitHub and IVLE.
5. Lecturer enters the command to analyze data.
6. CollatePlus analyzes the downloaded data and prepares the internal object structure.
7. Lecturer enters the command to view text written by a specific student.
8. CollatePlus shows a listing of all text written by the specified student.
Use case ends.

 CS2103/T

10

Appendix C. Suggested components for the architecture

 GUI: The Graphical User Interface.

 Logic: The main logic of the application.

 Analyzer: A temporary component used only during analysis of the downloaded data. The
component is created at the beginning of analysis and discarded after the analysis.

 Data: Created by the Analyzer component. Holds the object structure containing the data
required to answer user queries.

Appendix D. Suggested classes for the Data component

 Segment: An object of this class represents a segment of contiguous text authored by a
particular student. E.g. if a student is claiming authorship of all text in a particular file, all text
in that file is considered one Segment.

 File: Represents a file in a particular team’s repo. This class supports a compact() method that
removes unnecessary spaces from the file. What is considered ‘unnecessary spaces’ depends
on whether the file is a documentation file, java file, c++ file, xml file, etc.

 Commit: Represents a commit made by a student. (note: CollatePlus only keeps track of who
made the commit, when the commit was made, and which text segments were affected)

Appendix E. Sample data

 Adam and Betsy are in Team1.

 Adam has made only one commit. In that commit he added the file readme.txt with some
content in it.

 Betsy has made only one commit. In that commit she added some text to the end of readme.txt
and modified some of the Adam’s text in it.

 Adam is claiming authorship of text segment he added. Betsy is claiming authorship of the
segment she added.

Appendix F. getStudents method

getStudents (String moduleCode)

Connects to the IVLE server and retrieves a string containing details of students in the specified
module if the logged in user is a teaching team member of that module. It is assumed that the
connection to the IVLE has been set up before calling this method.

-- End of problem description--

