
 CS2103/T

1

NATIONAL UNIVERSITY OF SINGAPORE

CS2103/T – SOFTWARE ENGINEERING

(Semester 1: AY2015/2016)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Please write your Student Number only. Do not write your name.
2. This assessment paper contains SIX questions and comprises TEN printed pages.
3. Answer ALL questions within the space in this booklet.
4. This is an OPEN BOOK assessment.

 STUDENT NO: ___________________________________

This portion is for examiner’s use only

Question Marks Remarks

Q1 /6

Q2 /6

Q3 /5

Q4 /10

Q5 /6

Q6 /7

Total /40

 CS2103/T

2

[Examiner comments]
 Do not take example answers given here as ‘the only right answer'. In most cases it is

possible to get full marks even if your answer differs from the example given.
 The project used in this paper is slightly harder and slightly different than the module

project.
 This assessment paper does not cover project management. That aspect was covered in CA.

The problem description used for all questions in this assessment paper is given in the
appendices (last two pages of this assessment paper).

Q1 [2+2+2=6 marks]:
Please read Appendix A of the problem description. When answering this question, you may
consider the requirements specified in the problem description as well as requirements that you
would like to add.

a) Assume that you have categorized CollatePlus user stories into categories must-have, nice-to-

have, and unlikely-to-have. Give one must-have and two nice-to-have user stories for
CollatePlus. All three user stories must help the user evaluate the code quality of the code
written by a student.

Areas tested by this question: Functional requirements, product design
Sample answer:

1. Must have: As the lecturer, I can list all code written by a specific student so that I can
examine the code written by that student.

2. Nice to have: As the lecturer, I can generate quality related statistics of code written by a
student so that I can use those in evaluating the code quality of the student.

3. Nice to have: As the lecturer, I can view code with syntax coloring so that it is easier for me
to understand the code.

Examiner comments:
 The must have user story must be something the user cannot do without. i.e. without it, the

app will be useless. Giving such features as nice-to-have will be penalized too.
 The user stories should be about evaluating code quality, not other things such as work

distribution, consistency of commits
 Some answers were out of scope. E.g. ‘show test coverage of code written by a student’.

Measuring test coverage requires running the code using a coverage tool, which is unlikely
to be in the scope of a CollatePlus.

 The app is not meant for students. The user stories should not be for students.
 Answers that are not written in user story format will be penalized.

b) Give an example of a non-functional requirement of CollatePlus that is directly related to a

functional requirement specified in your answer to part (a) above.

Areas tested by this question: non-functional requirements.
Sample answer:

 CollatePlus must be able to list up to 10 KLoC of lines written by a single student.
Examiner comments:

 Some answers were too vague (e.g. the software should be reasonably fast). Good
requirements should be concrete and precise.

 Some were assumptions rather than requirements. E.g. The computer will have enough
memory for the app. A better requirement is ‘The app should need no more than 100Mb of

 CS2103/T

3

RAM’.

c) Give two extensions to the use case description given in Appendix B. Write your answer below

(not in Appendix B).

Areas tested by this question: use cases.
Sample answer:
3a. App cannot connect to IVLE server or GitHub server

3a1. App informs user that it cannot connect to server.
Use case resumes at step 2. (also acceptable: Use case ends)

7a. The student does not exist
7a1. App informs user that student does not exist.
Use case resumes at step 7.

Examiner comments:
 Other possible extensions: use enters wrong command, configuration file is missing, …

Q2 [4+2=6 marks]:
(a) Propose an architecture for CollatePlus. Your architecture must include the components given
in Appendix C. If your architecture contains more components (recommended), please provide a
brief overview of each component you added (similar to the descriptions given in Appendix C).

Areas tested: Architecture
Sample answer:
TUI: The Text UI
IVLE Connector: Handles connection to IVLE
GitHub Connector: Handles the connection to GitHub
Config: Handles reading of config values from hard disk.

DataGUI

Lo
gi

c

GitHub
Connector

GitHub
server

TUI
IVLE

Connector
IVLE

server

Analyzer

Config

Config
file

Examiner comments:

 Other possible components: Parser, Util/Common, TestDriver
 Both solid arrows or dashed arrows are acceptable if used consistently. However,

indiscriminate use of double-headed arrows (or pairs of arrows in two directions) will be
penalized. If you use double-headed arrows everywhere, the reader cannot identify the
direction of the dependency.

(b) Consider this extract (only two components are shown) from
another proposed architecture for CollatePlus. Comment on how GUI Logic

 CS2103/T

4

the two arrows between GUI and Logic affect the design quality.
Is it possible to remove one of them?
If yes, which one and how? If no, why?

Areas tested: Design patterns, design quality
Sample answer:
The two arrows indicate a high coupling between the two components. One can argue that Logic
will be more cohesive if it did not depend on the GUI. Either of the two dependencies can be
removed using the Observer pattern. Another simpler way to remove the dependency from Logic
to GUI is to ensure that any change to GUI is initiated in GUI itself rather than by Logic. This is
especially suitable here because the data of CollatePlus do not change over time (they are
downloaded once at the beginning) and using Observer pattern in such a case would be an
overkill.

Examiner comments:

 You are expected to refer to coupling and/or cohesion in the answer. Mentioning Observer
pattern wasn’t required but can earn bonus marks.

Q3[5 marks] Consider the use case description given in Appendix B.
Use a suitable UML diagram to explain the interactions between architectural components
required during step 5-6 only.
State (in the diagram) the API methods taking part in the interactions.

Areas tested by this question: API design, Sequence diagrams
Sample answer:

:TUI :Logic

d:Data

:Analyzer

analyze(gitHubData,
ivleData)

Indicates success

d

Types ‘analyze’ execute(“analyze”)

Data(dataObjects)

Examiner comments:

 You are expected to show creation of Analyzer component and Data component.

 Bonus marks for showing the discarding of Analyzer component.

 CS2103/T

5

 Misusing activation bar (i.e. starts too early or continues
beyond the return arrow) will be penalized.

Q4 [7+3=10 marks] (a) Use suitable UML diagrams to propose an object-oriented design for the
Data component. Show all navigabilities and multiplicities. Try to minimize associations.
Show important attributes and important methods only (no more than 5 each).
Your design must include, but is not limited to, the classes listed in Appendix D.
Areas tested by this question: OOP, class diagrams
Sample answer:

<
<

fa
ça

d
e

>
>

D
a

ta

Student

Data

DocFile

compact() {abstract}

Segment

CppFile

*

JavaFile

{abstract}
File

Team

Commit

1..*

compact()

compact()

compact()
*

*

*

when

*

0..1

*

1

1

1

*

1

author of

belongs to

affected

Examiner comments:

 Other possible classes (not strictly necessary): User, TeachingTeamMember, Repo
 Bonus marks for using inheritance, composition.
 Navigabilities may differ but all objects should be reachable.
 Note the Some Segments may not be claimed by anyone, hence the multiplicity of 0..1 in

the Student—Segment association
 Each file belongs to a Team, not a Student, even if a single team wrote the entire file.
 It’s ok to have a few more associations than given in the sample answer, but not too many,

as the question asks you to minimize associations.

(b) Consider the sample data given in Appendix E and your proposed design above. Use a suitable
UML diagram to show the object structure in the Data component for the given sample data.

 CS2103/T

6

Areas tested by this question: object diagrams
Sample answer:

:D
a

ta

:Segment

Adam:Student

Readme:DocFile

m1:Commit

team1:Team

m2:CommitBetsy:Student

:Segment

Q5 [4+2=6 marks]:
(a) Consider the getStudents method/function in Appendix F. Use Java, C++, or pseudo code to
show how you would use i. assertions, ii. exceptions, and iii. logging in that method.
Show no more than one example of each. Only the relevant lines of the method need to be shown.

Areas tested by this question: defensive coding
Sample answer:

assert (moduleCode != null);
…
try{
 //get student list
} catch (ServerNotConnectedException e){
 log(“Server not connected when checking for module: ” + moduleCode);
 throw e;
}

Examiner comments:

 Should not use assertions to confirm the server is up because although it is assumed the
server connection has been verified before, the server can go down any time. Exceptions
should be used instead. This was discussed during a lecture, taking Google servers as an
example.

 Printing the stack trace or an error message to the console is not an acceptable ways of
handling an exception. In fact this method should not print anything because we don’t even
know which UI (i.e. GUI or TUI) is being used. If this method interacts with the user, it
breaks the principle of separation of concerns.

 Blatant coding standard violations might cost you marks. A common mistake was to have a
line break between “}” and “ ”

 Avoid picking examples that are not clear cut, such as given below. As you are given the
freedom to pick your own examples, you will not be given the ‘benefit of the doubt’. If the
example is not clear cut, you will not get marks.

o assert numberOfStudents > 0 is not a good example of using asserts. Isn’t it possible

 CS2103/T

7

that the module does not have students yet (e.g. at the beginning of the semester).
o moduleCode == null is unlikely to be situation for throwing an exception. This more

likely to be a programmer error rather than a user error or a problem in the
environment.

o Catching NullPointerException is not a good example either. This exception can
happen anywhere when operations are performed on objects that are not
confirmed as not null. That means it is a result of sloppy coding rather than
user/environment errors.

(b) If the Analyzer component consists of just one class and it is instantiated no more than once at
any time, is it OK to make all its methods and attributes class-level (i.e. static)? Justify your
answer.

Areas tested by this question: advanced implementation techniques.
Sample answer:
Not recommended because making everything static will make it harder to test (because
dependency injection is hard to use on static methods because static methods cannot be
overridden) and it goes against the OOP philosophy.

Examiner comment:

 This was discussed during the lecture and in the IVLE forum. Nevertheless, this was
intended to be a ‘difficult’ question and as expected, only about 20% answered it correctly.

 The question does not ask whether it is necessary to make everything static. If that was the
question, the answer is a clear ‘No’. It asks if it is OK to make everything static.

 Other weaker, but not totally wrong reasons for not making the class static:
o It cannot be created/discarded at will, which means it will take up memory as long

as the app is running. The reason why this is not a strong argument because we can
have a method in the class (e.g. reset()) to set its variables to null, freeing up most of
the memory held by it.

o If multiple instances are needed in the future, we need to change the code a lot.
o The state of the Analyzer becomes shared/global across the whole application

which makes it more prone to misuse and a cause of subtle bugs.

Q6 [5+2=7 marks] (a) Assume you have been asked to test the getStudents method described in
Appendix F. Propose an effective and efficient set of tests cases. You may not propose more than 8
test cases.
Given below is an example test case list used for testing a different method
isCorrect(String answer) from a different software. You may follow a similar format in your answer.

answer Is question open for submission?

1 Correct answer Yes

2 Incorrect answer No

Areas tested by this question: test case design heuristics

 CS2103/T

8

Sample answer:

moduleCode User logged in?
A teacher of the

module?
Server available?

1 valid Yes No Yes

2 valid No Yes Yes

3 valid Yes Yes No

4 Non existent Yes Yes Yes

5 null Yes Yes Yes

6 Empty string Yes Yes Yes

7 valid Yes Yes Yes

Other parameter that can be considered: Is user an instructor?

Examiner comments:
 The key is to realize that the parameters of the function are not the only things that can be

varied in test cases. Any other thing that can affect the behavior of a method should also be
considered as inputs. The example given in the question was intended to remind you of
this (note how it shows two inputs while the method being tested has only one parameter)

 To get full marks, you should have given at least three inputs (the sample answer above
has four).

 You can also lose marks for not following other test case design heuristics. E.g. if you
included multiple invalid values in the same test case.

 (b) Comment on the following statement.

While 100% path coverage is very difficult to achieve, it is worthy of achieving because it
certifies the code as bug free.

Areas tested by this question: coverage
Sample answer:
100% path coverage does not certify the code is bug free. Some needed paths may be missing
from the code altogether. E.g. if the code has an if branch, but the else branch is missing altogether.
In addition, 100% path coverage can be very expensive to achieve for non-trivial code.

Examiner comments: This was discussed during a lecture. Unfortunately, many did not answer
this question correctly.

 CS2103/T

9

Given below is the problem description used for all questions in this assessment paper.
You may detach this page from the assessment paper. There is no need to submit this page.

Appendix A. CollatePlus product description

Your team has been asked to build a software application called CollatePlus which will be used
for analyzing text (code and documentation) written by students in CS2103 module project.

1. CollatePlus is a desktop application. It is meant to be used by CS2103 teaching team
members.

2. CollatePlus can be accessed using a GUI or a Textual UI (TUI).

3. CollatePlus downloads student data from the IVLE server and commit history from the
GitHub server. All data for the entire cohort is downloaded at once. The download is
triggered by the user. Data from GitHub comes as a single string. Data from IVLE too
comes as a single string. The data is then analyzed and converted into an object structure
that captures the information required to display data about student contributions to the
project.

4. For any student in the class, CollatePlus can show,

a. A collation of all the text segments (code and documentation) written by the
student for the project.

b. A list of all the commits made by the student in the team repo.
c. A list of all the project files modified by the student.

5. CollatePlus does not store the downloaded data in the user’s Computer.

6. While multiple students may have modified a text segment, only one student may claim the
authorship of a text segment. The author of a text segment is indicated using specially-
formatted comments, similar to how you did it in your module project.
Some segments may not be claimed by any student (e.g. code reused from elsewhere).

7. Some configuration data (e.g. login credentials of the user for IVLE/GitHub, mapping from
matric number to github user ID, etc.) are to be put in a file named config.txt. The user is
expected to create that file manually, following a specific format. CollatePlus reads that file
at startup.

Appendix B. An example use case description

Use case: View text written by a student
Actors: Lecturer

1. Lecturer launches the Text UI version of the app.
2. App prompts the Lecturer to enter a command.
3. Lecturer enters the command to download data from servers.
4. CollatePlus downloads data from GitHub and IVLE.
5. Lecturer enters the command to analyze data.
6. CollatePlus analyzes the downloaded data and prepares the internal object structure.
7. Lecturer enters the command to view text written by a specific student.
8. CollatePlus shows a listing of all text written by the specified student.
Use case ends.

 CS2103/T

10

Appendix C. Suggested components for the architecture

 GUI: The Graphical User Interface.

 Logic: The main logic of the application.

 Analyzer: A temporary component used only during analysis of the downloaded data. The
component is created at the beginning of analysis and discarded after the analysis.

 Data: Created by the Analyzer component. Holds the object structure containing the data
required to answer user queries.

Appendix D. Suggested classes for the Data component

 Segment: An object of this class represents a segment of contiguous text authored by a
particular student. E.g. if a student is claiming authorship of all text in a particular file, all text
in that file is considered one Segment.

 File: Represents a file in a particular team’s repo. This class supports a compact() method that
removes unnecessary spaces from the file. What is considered ‘unnecessary spaces’ depends
on whether the file is a documentation file, java file, c++ file, xml file, etc.

 Commit: Represents a commit made by a student. (note: CollatePlus only keeps track of who
made the commit, when the commit was made, and which text segments were affected)

Appendix E. Sample data

 Adam and Betsy are in Team1.

 Adam has made only one commit. In that commit he added the file readme.txt with some
content in it.

 Betsy has made only one commit. In that commit she added some text to the end of readme.txt
and modified some of the Adam’s text in it.

 Adam is claiming authorship of text segment he added. Betsy is claiming authorship of the
segment she added.

Appendix F. getStudents method

getStudents (String moduleCode)

Connects to the IVLE server and retrieves a string containing details of students in the specified
module if the logged in user is a teaching team member of that module. It is assumed that the
connection to the IVLE has been set up before calling this method.

-- End of problem description--

