
Aug 2016 edition – for NUS students only

1

[L3P1]

Object-Oriented Programing: Basics

Introduction to Object-Orientation
Instead of writing our own handout, we refer you to the document Object-Oriented

Programming with Objective-C released by Apple Inc. This is compulsory reading for those who

are new to Object Oriented (OO) Programming. In spite of the title, the document is mostly

programming language independent; you may ignore any references to Objective C.

Creating an OO solution

Class diagrams

UML class diagrams describe the structure (but not the behavior) of an OO solution. These are

possibly the most often used diagrams in the industry and an indispensable tool for an OO

programmer.

Class name

visibility name = default-value
…

visibility name (parameter-list) : return-type
…

attributes

methods

Table

- number: Integer
- chairs: Chair = null

+ getNumber() : Integer
+ setNumber(n: Integer)

The above illustrates the basic notations of a class diagram. In particular, attributes represent

the data of the class, as opposed to methods that represent the operation (or behavior).

Visibility
The visibility of attributes and operations is used to indicate the level of access allowed for each

attribute or operation. The types of visibility (and their exact meaning) depend on the

programming language used. Here are some common visibilities and how they are indicated in a

class diagram:

+ public - private # protected ~ package

Associations
Within an OO solution, objects collaborate with one another. These collaborations are

represented as connections (or associations). Each association is denoted as a line between two

classes in a UML class diagram. As an example, the Admin object needs to be associated to

Student objects, so as to access information. The association is depicted as follows.

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/OOP_ObjC/
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/OOP_ObjC/

Aug 2016 edition – for NUS students only

2

Admin Student
students

Class A

Attributes

UML Notation : Association (partial)

Class B

Attributes
[role of B]

[role of A]Operations Operations

Note that an association link in a class diagram denotes a permanent or semi-permanent

structural link between objects of two classes. Temporary contacts between objects (e.g. ClassA

uses a constant defined in ClassB) are not shown as associations. Such temporary contacts are

shown as dependencies instead (denoted as a dashed arrows).

Class A

Attributes

UML Notation : Dependency

Class B

Attributes

Operations Operations

The ‘Operations’ compartment (or even both ‘Attributes’ and ‘Operations’ compartments) may

be omitted if such details are not important for the task at hand. For simplicity, these two

compartments are omitted from most of the subsequent class diagrams.

Class A

Attributes

Class B

Attributes

Operations

Class C Class E

Operations

Class D

Operations

 ‘Role’ labels are optionally used to indicate the role played by the classes in the relationship.

For example, the association given below represents a marriage between a Man object and a

Woman object. The respective roles played by objects of these two classes are ‘husband’ and

‘wife’.

Man Woman
wife

husband

Association labels are used to describe the association. In the diagram below, “an Admin object

uses Student objects” or “Student objects are used by an Admin object”. The arrow head

indicates the “direction” in which the label is to be read.

Aug 2016 edition – for NUS students only

3

Admin Student

Class A

UML Notation : Association (partial)

Class B

uses

label

Admin Student
used by

A class diagram can also indicate the multiplicity of an association. Multiplicity is the number of

objects of a class that participate in the association.

Commonly used multiplicities:

 0..1 : optional, can be linked to 0 or 1 objects

 1 : compulsory, must be linked to one object at all times.

 * : can be linked to 0 or more objects.

 n..m : the number of linked objects must be n to m inclusive

In the diagram below, an Admin object administers (in charge of) any number of students but a

Student object must always be under the charge of exactly one Admin object.

Admin Student

Class A

UML Notation : Association (partial)

Class B

*

multiplicity of B

1

multiplicity of A

Each Student must be associated to only one
Admin at all times

administers

This proper use of multiplicity is shown below:

A B

This number shown in this area near class A denotes
How many objects of A is associated with ONE object of B

As an exercise, suppose the following additional details are included:

 Each Student must be supervised by a Professor.
 Students have matriculation numbers. A Professor cannot supervise more than 5

students.
 Admin staff handles Professors as well.

Here is the updated class diagram:

Aug 2016 edition – for NUS students only

4

Professor Studentstudent
0..5

1
supervisor

Admin
staff
*

students

*

*
*

UML notes and constraints
UML notes are used to augment a UML diagram with additional information. These notes can be

shown connected to a particular element in the diagram or can be shown without a connection.

The diagram below shows examples of both.

Professor Studentstudent
0..5

1
supervisor

Admin
staff
*

students

*

*
*

This may be redundant.
To be verified later.

This diagram is only a
work in progress.

A note can be used to specify a constraint within curly brackets. Natural language or a formal

notation such as OCL (Object Constraint Language) may be used to specify constraints. OCL is

beyond the scope of this handout.

Player

Die

Turn

FaceValue

takes

throws 1
1

{ FaceValue can be
1,2,3,4,5 or 6 only }

involves
throwing

Navigability
Navigability is another detail that can be shown in class diagrams. Navigability (denoted as an

arrowhead in the association link) indicates whether a class involved in an association is

"aware" of the other participating class.

Logic Minefield Cell

ConfigGenerator

Logic is aware of Minefield, but
Minefield is not aware of Logic

At the level of program code, navigability implies how objects are referenced. In the example

above, a Logic object holds a reference to a ConfigGenerator object, but not the other way around.

Navigability can be unidirectional or bidirectional. For convenience, a line without arrow heads

can be used to indicate a bidirectional link. However, if none of the associations in a class

diagram has navigability arrows, it usually means that navigability is “unspecified”.

Aug 2016 edition – for NUS students only

5

Logic Minefield

Unidirectional. Only one
class is aware of the other.

UI Core

Bidirectional. Each class is
aware of the other.

UI CoreEither bidirectional or
navigability unspecified.

Associations as attributes
An attribute is sometimes used to represent an association. The diagram below depicts a

multiplayer Square Game being played on a board comprising of one hundred squares. Each of

the squares may be occupied with any number of Pieces, each belonging to a certain player. A

piece may or may not be on a square. Note how the association ’is on’ can be replaced by an isOn

attribute of the Piece class. In order to realize the 0..1 multiplicity, the isOn attribute can either

be null or hold a reference to a Square object.

SquareGame

Player

plays

Piece

Board

Square

number

owns

p
la

ye
d

 o
n

100
has

is
 o

n

2..*

1

*

SquareGame

Player

plays

Piece

Board

Square

number

owns

p
la

ye
d

 o
n

100
has

2..*

1

isOn:Square

0.. 1

In addition, association multiplicities of two or more can be made as part of the attribute using

name: type [multiplicity] = default value

Board

squares: Square[100]=null

Enumerations
An <<enumeration>> is used to indicate that an attribute can only take on a fixed set of values.

Aug 2016 edition – for NUS students only

6

Player

Die

Turn

FaceValue: int

takes

throws 1
1

{FaceValue can be
1,2,3,4,5 or 6 only}

Player

Die

Turn

FaceValue: DIE_VALUE

takes

throws 1

1

<<enumeration>>
DIE_VALUE

ONE, TWO, THREE,
FOUR, FIVE, SIX

Object diagrams

Sometimes it is useful to show objects instead of classes. These are object diagrams. An object

diagram shows an object structure at a given point of time while a class diagram represents the

general situation. Given below is an example.

Lee:Professor

Jean:Student

:Admin

:Professor

Jon:Student

:Student

name = “L. John”

:Professor Jean:Student

:Admin

:Professor :Student

[Ch.3]

Object names are depicted differently from class names. Firstly, object names are underlined.

Secondly, each object may be given an ‘instance name’, in addition to the class name, using the

format instance name: class name. An example is Jean:Student where Jean is the object instance

name and Student is the class name. Also note the omission of association roles, most attributes,

and some object names, as they do not add value to the diagram. It also does not make sense to

show methods in an object diagrams.

Both object diagrams are derived from the same class diagram shown earlier. In other words,

each of these object diagrams shows ‘an instance of’ the same class diagram.

Implementing basic class structures

Most OO languages have direct ways of implementing the class structures.

Java

Classes → Java classes
Attributes → Java variables
Operations → Java methods

C++

Classes → C++ classes (and header files)
Attributes → C++ variables
Operations → C++ functions

Note that reference variables are used to implement associations, but not primitive variables

such as int.

Aug 2016 edition – for NUS students only

7

Logic

mineField: MinefieldLogic Minefield Same as

class Logic {

Minefield minefield;

…

}

class Minefield {

…

}

A variable gives us a 0..1 multiplicity (also called optional associations) because a variable can

hold a reference to a single object or null. A variable can be used to implement a 1-multiplicity

too (also called compulsory associations). To implement other multiplicities, choose a suitable

data structure such as Arrays, ArrayLists, HashMaps, Sets, etc.

Logic ConfigGenerator

class Minefield {

Cell[][] cells ;

…

}

Logic Minefield
0..1

1

Minefield Cell
W*H

class Logic {

Minefield minefield;

…

}

class Logic {

ConfigGenerator cg;

…

}

Class-level members

Most OO languages allow defining class-level (also called static) attributes and operations. They

are like ‘global’ variables/functions but attached to a particular class. For example, the variable

totalStudents of the Student class can be declared static because it should be shared by all

Student objects. However, the variable name should not be static as each Student should have its

own name. Similarly, getTotalStudent() can be a static operation. In UML class diagrams,

underlines are used to denote class-level attributes and variables.

Aug 2016 edition – for NUS students only

8

Single Responsibility Principle

The Single Responsibility Principle (SRP) states,

A class should have one, and only one, reason to change.

If a class has only one responsibility, it needs to change only when there is a change to that

responsibility. A counter example is a TextUi class that does parsing of the user commands as

well as interacting with the user. That class needs to change when the formatting of the UI

changes as well as when the syntax of the user command changes. Hence, such a class does not

follow the SRP. Refer the following article for a longer write up on SRP:

 http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Encapsulation in OOP

An object is an encapsulation some data and related functions. i.e.,

1. It packages those data and related functions together into one entity.
2. The data is hidden from the outside world (we call this concept information hiding) and

are only accessible using the functions.

References

[1] Object-Oriented Programming with Objective-C , A document by Apple inc., retrieved

from

http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/OOP_ObjC

/OOP_ObjC.pdf

Worked examples

[Q1]
(a) Which of the following class diagrams match with the object diagram below? For example,

class diagram (1) matches with the object diagram because the object diagram could be an

instance of the class diagram given.

:Unit :Item

(1)

(2)

Unit Item
11

Unit Item
0..11

Group

*

*

(3)

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/OOP_ObjC/OOP_ObjC.pdf
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/OOP_ObjC/OOP_ObjC.pdf

Aug 2016 edition – for NUS students only

9

Unit Item
2..*1

(4)

Unit Item
1..*1..*

(5)

Unit Item
0..11

Group

1

0..1

(b) Which of the following object diagrams are allowed by the class diagram below?

Unit Item
0..51..*

0..1

0..1

(1)

:Unit :Item

:Item

(2)

:Unit :Item

:Item

(3)

:Unit :Item

:Item

(4)

:Unit :Item

:Item

Aug 2016 edition – for NUS students only

10

[A1]
(a)

(1) matches

(2) matches

(3) does not match – According to this model, there should be at least 2 Items per Unit.

(4) matches

(5) does not match – According to this model, a Unit must have a link to a Group.

(b)

(1) allowed

(2) not allowed. One item is not linked to a Unit

(3) Not allowed. An Item cannot be linked to more than one other Item.

(4) Allowed. A unit can exist without an Item.

[Q2]
Infer the class names that are missing in the following object diagram. Draw a class diagram

that could possibly generate this object diagram.

[A2]

Country StateOrganization
< isPartOf< isMemberOf

* * *1

< borders

< borders

*

* *

< borders

* * *

Note: This answer does not use inheritance as it was not covered in this handout.

[Q3]
First, draw an object diagram to represent the following description. Then, use the object

diagram to draw a class diagram. Be sure to indicate the multiplicity and label the associations.

Aug 2016 edition – for NUS students only

11

Sichuan, Jiangsu, and Guandong are all provinces in China. Singapore, Malaysia, and

China are all countries in Asia. Beijing is the capital of China. Kuala Lumpur is the capital

of Malaysia.

 [A3]

Sichuan:Province

China:Country

Asia:Continent
Guandong:Province

Jiangsu:Province

Singapore:Country

Malaysia:Country

Beijing:City

KualaLampur:City

belongs to >

belongs to >

belongs to >

<
 i
s
 c

a
p
it
a
l
o
f

is capital of >

is part of >

is part of >

is part of >

Province Country Continent

City

is part of > belongs to >

< is capital of

* 1..*

0..1

1

0..1

1

