
Aug 2016 edition – for NUS students only

1

[L4P1]

Object-Oriented Programming: Intermediate Concepts

The analysis process for identifying objects and object classes is recognized

as one of the most difficult areas of object-oriented development.

--Ian Sommerville, in the book ‘Software Engineering’

Association classes

At times, there is a need to store additional information about an association. For example, a

Man class and a Woman class linked with a ‘married to’ association might also require the date

of marriage to be stored. However, that data is related to the association but not specifically

owned by either the Man object or the Woman object. In such situations, an additional class can

be introduced, e.g. a Marriage class, to store such information. These classes are called

association classes and they are denoted as a connection to an association link using a dashed

line as shown below.

115

Man

[Ch.4]

Woman

Marriage

date
licenseNo

divorce()

Note that while a special notation is used to indicate an association class, there is no special way

to implement an association class. At implementation level, an association class is most likely

implemented as follows.

115

Man

[Ch.4]

Woman

Marriage

date
licenseNo

divorce()

1 1

0..10..1

wifehusband

Composition and aggregation

A composition is an association that represents a strong “whole-part” relationship. When the

“whole” is destroyed, “parts” are destroyed too. UML uses a solid diamond symbol to denote

composition.

Aug 2016 edition – for NUS students only

2

Whole

UML Notation : Composition

Part

Board Square
100

Folder

is a sub-folder of >

In addition, composition also implies that there cannot be cyclical links. In the example above,

the notation represents a ‘sub-folder’ relationship between two folders while implying that a

Folder cannot be a sub-folder of itself. If the diamond is removed, it is no longer a composition

relationship and technically, allows a folder to be subfolder of itself.

Aggregation represents a ‘container-contained’ relationship. It is a weaker relationship than

composition. In UML, a hollow diamond is used to indicate an aggregation.

Container

UML Notation : Aggregation

Contained
Club Person

*

1..*

The distinction between composition and aggregation is rather blurred. Some practitioners (e.g.,

Martin Fowler, in his famous book UML Distilled) advocate not using the aggregation symbol

altogether as using it adds more confusion than clarity.

Object interactions

Suppose we are planning to implement a simple minesweeper game that has a text based UI and

a GUI. Given below is the OOP design we are considering for the application.

TextUi

Gui

MSLogic Minefield Cell*

Before jumping into coding, we may want to decide if this class structure is able to produce the

behavior we want. We also need to decide what methods each class need to have. To make those

decisions, we need to analyze the how the objects of these classes will interact with each other.

Both class diagrams can object diagrams we encountered in previous handouts can only depict

the structure of an OOP design. To depict the behavior, we can use UML sequences diagrams.

A UML sequence diagram captures the interactions between multiple objects for a given

scenario.

The following is a sequence diagram (SD) that describes the interactions between the player (an

actor) and the TextUi object. Note that newgame and clear x y represent commands typed by the

Player on the TextUi.

Aug 2016 edition – for NUS students only

3

5

:TextUi

newgame

show minefield

clear x y

show updated
minefield

Player

Figure 2. SD for newgame and clear

An explanation of the some basic elements of an SD is given below.

Lifeline: This shows that the
instance is alive

Operation
invoked

operation

Returns control and
possibly some return
value

Activation Bar: This is the period
during which the instance is in

control of the execution

Time
Passes

returned
value

instance

Actor

Entities: Actors or components
involved in the interaction

Figure 3. Basic elements of an SD

The notation :TextUi denotes ‘an unnamed instance of the class TextUi’. If there were two

instances of TextUi in the diagram, they can be distinguished by naming them as TextUi1:TextUi

and TextUi2:TextUi.

In the diagram below, an SD shows the interaction between the player and the TextUi for the full

game.

Aug 2016 edition – for NUS students only

4

:TextUi

newgame

Show minefield

loop [until won or lost]

mark x,y OR
clear x,y

Show updated
minefield

Show result

This is how we show
iterative behavior on a

sequence diagram

Player

loop [condition]

These an example of an
iterative behavior.

Figure 4. Showing loops in an SD

How does the TextUi object carry out the requests it has received from player? It would need to

interact with other objects of the system. Since the MSLogic class is the one that controls the

game logic, the TextUi needs to collaborate with MSLogic to fulfill the newgame request. This may

be represented by extending the SD as shown below.

8

MS SD – add MS Logic (new)

:TextUi

newgame

show minefield

:MSLogic

newGame()

getHeight()

getWidth()

W

H

Player

Figure 5. TextUi and MSLogic interactions for newgame

In the above diagram, it is assumed that W and H (Width and Height of the minefield,

respectively) are the only information TextUi requires to display the minefield to the Player. Note

that there could be other ways of doing this.

The MSLogic methods that showed up in this SD are:

 newGame():void

 getWidth():int

Aug 2016 edition – for NUS students only

5

 getHeight():int

The next task focuses on the mark or clear operations performed until the game is won or lost.
MS SD – add MS Logic (mark OR clear)

:TextUi

mark x y OR
clear x y

Show updated
minefield

:MSLogic

markCellAt(x,y) OR
clearCellAt(x,y)

getGameState()

gameState

ref get minefield appearance

Show result

loop [until won|lost]

Th
is is h

o
w

 w
e refer to

 an
o

th
er

SD
 given

 elsew
h

ere

Player

Figure 6. Using a ref frame in an SD

This interaction adds the following methods to the MSLogic class

 clearCellAt(int x, int y)

 markCellAt(int x, int y)

 getGameState() :GAME_STATE (GAME_STATE: READY, IN_PLAY, WON, LOST, …)

Note the use of a ref frame to allow a segment of the interaction to be omitted and detailed in

another diagram. Given below is the SD that elaborates on the retrieval of cell appearance from

MSLogic. MS SD – add MS Logic (get cell appearance)

:TextUi :MSLogic

getAppearanceOfCellAt(x,y)

cellAppearance

sd get minefield appearance

loop [for all cells]

“s
d

”
st

an
d

s
fo

r
“s

eq
u

en
ce

d

ia
gr

am
”.

 T
h

is
 is

 t
h

e
U

M
L

w
ay

 o
f

la
b

el
in

g
an

 S
D

Figure 7. The SD for the ref frame

Correspondingly, the following operation gets added to MSLogic API:

 getAppearanceOfCellAt(int,int):CELL_APPEARANCE (CELL_APPEARANCE: HIDDEN, ZERO,
ONE, TWO, THREE, …, MARKED, INCORRECTLY_MARKED, INCORRECTLY_CLEARED)

Aug 2016 edition – for NUS students only

6

In the above design, TextUi does not access Cell objects directly. Instead, it gets values of type

CELL_APPEARANCE from MSLogic to be displayed as a minefield to the player. Alternatively, each

cell or the entire Minefield can be passed directly to TextUi.

To reduce clutter, activation bars and return arrows may be omitted if they do not result in

ambiguities or loss in information. Informal operation descriptions such as those given in the SD

below can be used, if the purpose is to brainstorm and not to specify the API.

12

:TextUI

newgame

show
minefield

:MSLogic

newGame

get minefiled
info

Figure 8. A 'no frills' SD

Here is the full list of MSLogic methods discovered thus far:

newGame(): void

getWidth():int

getHeight():int

clearCellAt(int x, int y)

markCellAt(int x, int y)

getGameState() :GAME_STATE

getAppearanceOfCellAt(int x, int y): CELL_APPEARANCE

The above is for the case when Actor Player interacts with the system using a text UI. Additional

operations (if any) required for the GUI can be discovered similarly.

More details can be included to increase the precision of the method definitions before coding.

Such precision is important to avoid misunderstandings between the developer of the class and

developers of other classes that interact with this class.

Operation: newGame(): void

Description: Generates a new WxH minefield with M mines. Any existing minefield will be

overwritten.

Preconditions: none.

Postconditions: A new minefield is created. Game state is READY.

Preconditions are the conditions that must be true before calling this operation. Postconditions

describe the system after the operation is complete. Note that post conditions do not say what

happens during the operation. Here is another example:

Operation: clearCellAt(int x, int y): void

Description: Records the cell at x,y as cleared.

Aug 2016 edition – for NUS students only

7

Parameters: x, y coordinates of the cell

Preconditions: game state is READY or IN_PLAY. x and y are in 0..(H-1) and 0..(W-1),

respectively.

Postconditions:

Cell at x,y changes state to ZERO, ONE, TWO, THREE, …, EIGHT, or INCORRECTLY_CLEARED

Game state changes to IN_PLAY, WON or LOST as appropriate.

Other operations can be specified similarly. Note that preconditions and postconditions can be

described as part of the operation ‘description’ instead of stating them separately. That is the

approach taken by Java method descriptions.

Now, let us look at what other objects and interactions are needed to support the newGame()

operation. It is likely that a new Minefield object is created when the newGame() method is

called, as depicted in the SD below.

156

creation

Now, what internal behavior is needed to support the newGame()
operation?

It is likely that we create a new Minefield object when the
newGame() operation is called. This is how we show that in an
SD.

Also note that we have abstracted away the behavior of the Minefield
constructor. We plan to design it at a later stage.

:Minefield

:Logic

Minefield ()newGame ()

This is how we show
object creation

Activation bar for
the constructor

[Ch.4]

Note that the behavior of the Minefield constructor has been abstracted away. It can be designed

at a later stage.

To illustrate object deletion in an SD, suppose MSLogic supports a reset() operation.

157

deletion

To illustrate how we show object deletion in an SD, let us assume
MSLogic also supports a reset() operation.

Note that in languages such as Java that supports automatic memory
management, object deletion is not that important.

However, you can still use the above notation to show at which point
the object stops being used.

:Minefield:Logic

delete

reset ()

Lifeline stops here

[Ch.4]

In languages such as Java that supports automatic memory management, although object

deletion is not that important, the above notation can still be used to show the point at which

the object ceased to be used.

Moreover, the diagram below assumes that the Minefield object has enough information (i.e. H,

W, and mine locations) to create itself.

:Minefield
Minefield ()

:Logic
newGame ()

Aug 2016 edition – for NUS students only

8

An alternative is to have a ConfigGenerator object that generates a string containing the

minefield information as shown below.

Thinking about this interaction further surfaces a problem: Minefield
does not have enough information (i.e., H, W, and mine locations) to
create itself!

Perhaps we can refine the design to have a ConfigGenerator object that
generates a string containing the minefield information.

:Minefield
Minefield ()

:Minefield

:Logic

Minefield (minefield_config_string)

newGame()
:ConfigGenerator

:Logic

getMinefieldConfig ()

minefield_config_string

newGame ()

[Ch.4]

In addition, getWidth(), getHeight(), markCellAt(x,y) and clearCellAt(x,y) can be handled like this.

160

getWidth(), getHeight(), markCellAt(x,y) and clearCellAt(x,y) can be
handled like this.

It appears as if MSLogic is simply redirecting operations to other
internal components. This is normal for classes that play the role
of a “façade” whose main job is to shield the component’s clients
from its internal complexities.

:Minefield:Logic

getWidth()getWidth()

markCellAt(x,y)markCellAt(x,y)

W

[Ch.4]

How is getGameState() operation supported? Given below are two ways (there could be other

ways):

1. Minefield class knows the state of the game at any time. Logic class retrieves it from the
Minefield class as and when required.

2. Logic class maintains the state of the game at all times.

Here’s the SD for option 1.

161

How is getGameState() operation supported?

We have a design choice to make. We have to choose between
1. Minefield class knows the state of the game at any time. Logic class
retrieves it from the Minefield class as and when required.
2. Logic class maintains the state of the game at all times.
3. There could be other ways of doing this.

Here’s the SD for option 1.

:Minefield:Logic

getGameState()getGameState()

gameState

[Ch.4]

Here’s the SD for option 2. Here, assume that the game state is updated after every mark/clear

action. Note the use of a nested activation bar.

Aug 2016 edition – for NUS students only

9

Here’s the SD for option 2. Here, we assume that the game state is
updated after every mark/clear action.

:Minefield:Logic

getAppearanceOfCellAt(x,y)

markCellAt(x,y)markCellAt(x,y)

appearance

updateState(appearance)

This is how we show an operation of the
same object being activated while
another operation is already in progress.

getGameState()

gameState

[Ch.4]

Here is another example showing the use of a nested activation bar.

163

Here is another example of that notation.

Another ObjectAn object

Choosing one of the options is a design decision you have to
make.

[Ch.4]

It is now time to explore what happens inside the Minefield constructor? One way is to design it

as follows.

alt

loop [for W*H]
:Cell

alt [mined cell]

setMine()

setMineCount(count)

:Minefield

This is how we show
alternative
interactions.

[else]

Cell

setMine()

setMineCount(int)

To illustrate optional interactions using the ‘opt’ frame, assume that Minesweeper supports the

‘timing’ feature.

Aug 2016 edition – for NUS students only

10

165

To illustrate how we show optional interactions, let us assume
Minesweeper supports the ‘timing’ feature.

:Logic

markCellAt(x,y)

opt [first move]
start ()

We can design the internal behavior of the whole MSLogic component by
using sequence diagrams in this manner.

[Ch.4]

:Timer

Similarly, parallel behavior can be shown using a ‘par’ frame (‘par’ frames are not examinable).

166

Parallel behavior

For your information (not examinable), here is the notation to show
parallel behavior.

par

[Ch.4]

When designing components, it is not necessary to draw elaborate sequence diagrams for all

interactions among objects. They can be done as rough sketches. Draw sequence diagrams only

when you are not sure which operations are required by each class, or when you want to verify

that your class structure can indeed support the required operations.

Inheritance

Sometimes, it helps to be able to define a new class based on another class. For example, to be

able to define an EvaluationReport class based on a Report class so that the EvaluationReport class

does not have to duplicate code that is already implemented in the Report class. This can be

achieved using the object-oriented concept of inheritance .

UML Notation : Inheritance
Report

EvaluationReport

Base class

Derived class

wordCount

print()

In the example above, The EvaluationReport inherits the wordCount variable and the print()

method from the base class Report.

 Other names for Base class: Parent class, Super class
 Other names for Derived class: Extended class, Child class, Sub class

Applying inheritance concept can result in the common parts among classes being extracted

into more general classes. In the example below, Man and Woman behaves the same way for the

‘owes money’ association. However, the two classes cannot be simply replaced with a more

general class Person because of the need to distinguish between Man and Woman for the

Aug 2016 edition – for NUS students only

11

‘marriage’ association. A solution is to add the Person class as a super class and let Man and

Woman inherit from Person.

Man Woman
owes money >

< owes money

*

*

*

*

*
*

*
*

< owes money
< owes money

Marriage

Person

Man

Woman

Marriage

< owes money

*

*

1

1

11

0..10..1

0..1

0..1

Inheritance implies the derived class can be considered as a sub-type of the base class (and the

base class is a super-type of the derived class), resulting in an ‘is a’ relationship2; for example, in

the class diagrams of a Snakes and Ladders board game given below:

 SnakeHeadSquare is a Square.

 SnakeTailSquare is a Square.

Board Square

number

100
has

Snake
head in

tail in

11

5
has

SnakeHeadSquare SnakeTailSquare

1

1

SnakeTailSquare too has
the attribute “number”,

inherited from the
super-type.

Substitutability
Every instance of a subclass is an instance of the superclass, but not vice-versa. For example, an

Academic is an instance of a Staff, but a Staff is not necessarily an instance of an Academic. As a

result, inheritance allows substitutability. i.e. wherever an object of the superclass is expected, it

can substituted by an object of any of its subclasses. For example, the following code is valid

because a SnakeHeadSquare object is substitutable as a Square object.

Square square = new SnakeHeadSquare(); // OK

But the following code is not because a square is declared as a Square type (see above) and

therefore its value may or may not be of type SnakeHeadSquare, which is the type expected by

variable snakeSquare .

SnakeHeadSquare snakeSquare = square; //Compile error

2 Inheritance does not necessarily mean a sub-type relationship exists. However, the two often go hand-
in-hand. In this handout, we assume inheritance implies a sub-type relationship.

Aug 2016 edition – for NUS students only

12

Interfaces

In an OO solution, an interface is a behavior specification. In Java, a class can be explicitly

declared as an interface which can then be used to specify the available operations without

implementing any. As shown in the code below.

/**

 * Represents an Employee who is paid

 * a salary.

 */

public interface SalariedStaff {

 void setSalary(int newSalary);

 int getSalary();

}

/**

 * Represents a staff member holding

 * an admin position.

 */

public class AdminStaff implements SalariedStaff {

 private int salary;

 @Override

 public void setSalary(int newSalary) {

 this.salary = newSalary;

 }

 @Override

 public int getSalary() {

 return salary;

 }

}

In UML, an interface is depicted with the keyword <<interface>>.

AcademicStaff AdminStaff

<<interface>>
SalariedStaff

name
salary

name
salary
setSalary(int)
getSalary()
arrangeMeeting()

setSalary(int)
getSalary()
giveLecture()

setSalary(int)
getSalary()This means Admin

“implements” the
SalariedStaff interface

If a class implements all operations specified in an interface, it is said that the class ‘implements’

the interface. Another term for this is interface inheritance. In UML, the relationship is shown

with a dashed line and a triangle similar to the one used for inheritance relationship. Similar to

the class inheritance explained earlier, interface inheritance too results in an is-a relationship.

Interface Segregation Principle

The integration Segregation Principle (ISP) states:

No client should be forced to depend on methods it does not use.

Aug 2016 edition – for NUS students only

13

For example, the Payroll class should not depend on the AdminStaff class because it does not use

the arrangeMeeting() method. Instead, it should depend on the SalariedStaff interface.

public class Payroll {

 //...

 private void adjustSalaries(AdminStaff adminStaff){ //violates ISP

 //...

 }

}

public class Payroll {

 //...

 private void adjustSalaries(SalariedStaff staff){ //does not violate ISP

 //...

 }

}

AdminStaff

<<interface>>
SalariedStaff

setSalary(int)
getSalary()
arrangeMeeting()

setSalary(int)
getSalary()

Payroll

Follows
ISP

Violates
ISP

Worked examples

[Q1]
Refine the class diagram model (given in L5P2 handout) so that it uses inheritance.

Country StateOrganization
< isPartOf< isMemberOf

* * *1

< borders

< borders

*

* *

< borders

* * *

Aug 2016 edition – for NUS students only

14

[A1]

LandArea

Country

< borders

StateOrganization

*

*

< isPartOf< isMemberOf

* * *1

[Q2]
Modify the class diagram below so that we can keep track of the grade a Student earned every

time he/she reads a module. Here, ‘reads’ means taking the module.

Student Module
< is read by

* *

 [A2]
It appears that now we are required to store some data (i.e. grade) about an association (i.e. ‘is

read by’). Note that storing the grade inside the Student or the Module is not appropriate as the

data is about a particular association between the two objects. Besides, the Student can read a

module multiple times. To tackle this situation, we can introduce a class called Reading to

represent the association.

Student Module

< is by * *
Reading

grade

11

is for >

Based on the new class diagram, a Reading object represents exactly one student reading

exactly one Module and the grade he/she obtained for the Module in that reading. A module can

have any number of Reading objects associated with it and a Student can have any number of

Reading objects. Furthermore, a Student can have multiple Reading objects for the same Module.

Note: Reading class can be shown as an association class too.

[Q3]
Create an OO class diagram to represent the following description:

Some modules require other prerequisite modules to be taken first. If two modules cover

nearly same material, taking one of them would preclude a student from taking the other.

Such modules are said to be mutually exclusive. The reasons or descriptions for

preclusion as well as for the prerequisite also need to be captured.

Aug 2016 edition – for NUS students only

15

[A3]
We cannot represent a prerequisite as a mere association between two modules because there

is some data (i.e. the reason for the prerequisite) we have to store about the association.

Therefore, we introduce a class to represent a prerequisite. Note that the

PrerequisiteRequirement class does not represent a module that is a prerequisite for another

module. It simply represents the fact/requirement/constraint that a certain module is a

prerequisite for a certain other module. A similar reasoning is behind the

PreclusionRequirement class.

A PrerequisiteRequirement has two associations with the Module class because the roles played

by each of the two Module objects connected to a PrerequisiteRequirement object are different

(one is the module that requires the other module as the prerequisite). In the case of the

PreclusionRequirement, both Module objects play the same role (either one is a preclusion with

respect to the other), letting us show it as one association with multiplicity of 2.

In the object diagram below (for your info only, not required by the question), CS2103 is a

prerequisite for CS3215 while CS3215 is a preclusion for CS3214 (and vice versa).

CS3214:Module

:PrerequisiteRequirement

is req
u

ired
 as a> reason=…

:PreclusionRequirement

reason=…

fo
r>

<
h

as
 a

<
h

as
 a

CS2103:Module CS3215:Module

[Q4]

(a) Draw the corresponding sequence diagram for the interactions resulting from the
highlighted statement below.

(b) Draw a class diagram for the code shown in the previous question. Show associations,
dependencies, navigabilities, and multiplicities.

class MRS {

private int BUFFER_SIZE = Config.BS;

//BS is a class-level constant of the Config class

private SRS1 srs1 = null;

private SRS2 srs2 = null;

public static void main(String[] args){

MRS mrs = new MRS();

mrs.interactWithUser();

}

private void interactWithUser(){

init();

greetUser();

processCommands();

Aug 2016 edition – for NUS students only

16

}

private void init(){

srs1 = new SRS1();

srs2 = new SRS2();

}

// TextDiff and Result are part of the solution (they are not library classes).

private boolean compareResults(Result[] results){

TextDiff diff = new TextDiff();

return diff.compare(results);

}

}

[A4]
(a)

Note slight variations in the notation. Unfortunately, no two UML tools draw diagrams exactly

alike and apparently, none follow the UML standard precisely. It is better for you to get used to

such slight variations.

Aug 2016 edition – for NUS students only

17

(b)

Notes: Result is simply a parameter to a method of MRS. It does not indicate a structural

relationship between MRS and Result. As far as we can see from the given code, it is merely a

dependency. Similarly, TextDiff is just a local variable inside a method, not a structural

relationship.

 [Q5]
Consider the code given below. Draw a class diagram to match the code. Include attributes,

operations, visibilities, navigabilities, multiplicities, and dependencies.

class ReportGenerator{

//getInstance always returns a valid Storage object.

private Storage storage = Storage.getInstance();

public static void main(){

ReportGenerator generator = new ReportGenerator();

generator.printReport(342);

}

public void printReport(int reportID){

//getReport(int) returns a Report object.

displayReport (storage.getReport(reportID).getText());

}

private void displayReport(String s){

//call the static method print() of Printer class

Printer.print(s);

}

}

[A5]
Note how only the link between ReportGenerator and Storage is an association. The other links

are merely dependencies because they do not represent structural links between classes. The

multiplicity 1 represents the fact that a ReportGenerator will always be linked to exactly one

Storage object.

Aug 2016 edition – for NUS students only

18

ReportGenerator

+printReport(int):void
-displayReport(String):void

Storage

+getInstance():Storage
+getReport(int):Report

Printer

+print(String):void

Report

+getText():String

1

[Q6]
Draw the corresponding class diagram for the following code. Include navigabilities, visibilities,

dependencies, multiplicities, attributes, association role names, and operations.

class Handle {
 public static int count;
 private Box myBox;

 public void createHandle() {
 Timer timer = new Timer();
 timer.start();
 myBox = new Box();
 myBox.update(timer);
 timer.stop();
 }
}

class Box {
 private String name;

 public void update(Timer timer) {
 timer.reset();
 Handle.count++;
 }

}

[A6]

Handle

+count:int

+createHandle()

Box

-name:String

+update(Timer)

myBox

0..1

Timer

+start()
+stop()
+reset()

Points to note:

 Associations are structural links between objects. An association link should be

supported by an instance-level variable that holds the link. Box accessing a static

variable in Handle class simply means a dependency, not an association link. Local

variables (e.g. timer variable inside createHandle method) and parameters (e.g. Timer

parameter in the update method) too indicate dependencies.

 An association link already implies a dependency; there is no need to add a dependency

link from Handle to Box.

-- End of handout --

