
Aug 2016 edition – for NUS students only

1

 [L6P1]

To Tighten or Loosen: What Makes a Good Design

Coupling
Coupling is a measure of the degree of dependence between components, classes, methods, etc.

Low coupling indicates that a component is less dependent on other components. In the case of

high-coupling (i.e. relatively high dependency), a change in one component may require changes

in other coupled components. Therefore, one should strive to achieve a low-coupled design.

In the example below, design A appears to have a higher coupling than design B.

UI

PlayerMgr PuzzleMgr

Storage

UI

PlayerMgr PuzzleMgr

StorageDesign BDesign A

Dependency

To illustrate some examples of coupling, component A is coupled to B if,

 component A has access to the internal structure of component B (this results in a very high
level of coupling);

 component A and B depend on the same global variable;
 component A calls component B;
 component A receives an object of component B as a parameter or a return value;
 component A inherits from component B;
 components A and B are required to follow the same data format or communication protocol.

Highly coupled (also referred to as tightly coupled or strongly coupled) systems display the

following disadvantages:

 A change in one module usually forces changes in other modules coupled to it (i.e. a ripple
effect).

 Integration is harder because multiple components coupled with each other have to be
integrated at the same time.

 Testing and reuse of the module is harder due to its dependence on other modules.

Cohesion
Cohesion is a measure of how strongly-related and focused the various responsibilities of a

component are. A highly-cohesive component keeps related functionalities together while

keeping out all other unrelated things. One should strive for high cohesion to facilitate code

maintenance and reuse.

Cohesion can be present in many forms. For example,

 Code related to a single concept is kept together, e.g. the Student component handles
everything related to students.

 Code that is invoked close together in time is kept together, e.g. all code related to
initializing the system is kept together.

 Code that manipulates the same data structure is kept together, e.g. the GameArchive
component handles everything related to the storage and retrieval of game sessions.

Aug 2016 edition – for NUS students only

2

The components in the following sequence diagram show low cohesion because user

interactions are handled by many components. Its cohesion can be improved by moving all user

interactions to the UI component.

14

Cohesion example

Display
warning

display info

:Logic :Storage:UI

Display result

The following are some disadvantages of low cohesion (or “weak cohesion”).

 Impedes the understandability of modules as it is difficult to express module functionalities
at a higher level.

 Difficulty in maintaining modules because a localized adjustment in the requirements can
result in changes spread across the system since requirement-related functionality is
implemented across many components of the system.

 Modules become less reusable because they do not represent logical units of functionality.

Open-Closed Principle
While it is possible to isolate the functionalities of a software system into modules, there is no

way to remove interaction between modules. When modules interact with each other, coupling

naturally increases. Consequently, it is harder to localize any changes to the software system. In

1988, Bertrand Meyer proposed a guiding principle to alleviate this problem. The principle,

known as the open-closed principle, states: “A module should be open for extension but closed for

modification”. That is, modules should be written so that they can be extended, without

requiring them to be modified. In other words, changing what the modules do without changing

the source code of the modules.

In object-oriented programming, these two

seemingly opposing requirements can be

achieved in various ways. This often requires

separating the specification (interface) of a

module from its implementation. For example,

consider this following design.

The behavior of the CommandQueue class can

be altered by adding more concrete Command

subclasses. For example, by including a Delete class alongside List, Sort, and Reset, the

CommandQueue can now perform delete commands without modifying its code at all. Indeed, its

behavior was extended without having to open up and modify its code. Hence, it was open to

extensions, but closed to modification.

Another example of putting this principle into action is Java Generics (similar to C++ templates).

The behavior of a template/generic class can be altered by passing it a different class as a

parameter. In the code below, the ArrayList class behaves as a container of Students in one

instance and as a container of Admin objects in the other instance, without having to change its

code. That is, the behavior of the ArrayList class is extended without modifying its code.

execute()
undo()

List Sort

CommandQueue *

Reset

<<interface>>
Command

add(Command)

Aug 2016 edition – for NUS students only

3

ArrayList students = new ArrayList<Student>();

ArrayList admins = new ArrayList<Admin>();

Dependency Inversion Principle (DIP)
The Dependency Inversion Principle states that high-level modules should not depend on low-

level modules. Both should depend on abstractions.

Consider the example below. In design (a), the higher level class Payroll depends on the lower

level class Employee, a violation of DIP. In design (b), both Payroll and Employee depends on the

Payee interface (not that inheritance is a dependency). Design (b) is more flexible (and less

coupled) because now the Payroll class need not change when the Employee class changes.

(a) (b)

Payroll

*

Employee
<<interface>>

PayeePayroll
*

Employee

Worked examples

[Q1]
Explain the link (if any) between regression and coupling.

[A1]
When the system is highly-coupled, the risk of regression is higher too. When component A is

modified, all components ‘coupled’ to component A risk ‘unintended behavioral changes’.

[Q2]
Discuss the coupling levels of alternative designs x and y.

.

A

B

D

E

C

A B

D

E

C

(x) (y)

[A2]
Overall coupling levels in x and y seem to be similar (neither has more dependencies than the

other). (Note that the number of dependency links is not a definitive measure of the level of

coupling. Some links may be stronger than the others.). However, in x, A is highly-coupled to the

rest of the system while B, C, D, and E are standalone (do not depend on anything else). In y, no

component is as highly-coupled as A of x. However, only D and E are standalone.

[Q3]
Discuss the relationship between coupling and testability (testability is a measure of how easily

a given component can be tested).

Aug 2016 edition – for NUS students only

4

[A3]
Coupling decreases testability as it is difficult to isolate highly-coupled objects.

[Q4]
Compare the cohesion of the following two versions of the EmailMessage class. Which one is

more cohesive and why?

// version-1
class EmailMessage {
 private String sendTo;
 private String subject;
 private String message;

 public EmailMessage(String sendTo, String subject, String message) {
 this.sendTo = sendTo;
 this.subject = subject;
 this.message = message;
 }

 public void sendMessage() {
 // sends message using sendTo, subject and message
 }
}

// version-2
class EmailMessage {
 private String sendTo;
 private String subject;
 private String message;
 private String username;

 public EmailMessage(String sendTo, String subject, String message) {
 this.sendTo = sendTo;
 this.subject = subject;
 this.message = message;
 }

 public void sendMessage() {
 // sends message using sendTo, subject and message
 }

 public void login(String username, String password) {
 this.username = username;
 // code to login
 }
}

[A4]
Version 2 is less cohesive because it is handling functionality related to login, which is not

directly related to the concept of ‘email message’ that the class is supposed to represent. On a

related note, we can improve the cohesion of both versions by removing the sendMessage

functionality. Although sending message is related to emails, this class is supposed to represent

an email message, not an email server.

