
Aug 2016 edition – for NUS students only

1

[L7P3]

How to Avoid a Big Bang: Integrating Software Components

Integration

Timing and frequency: ‘Late and one time’ vs ‘early and frequent’

Integrating parts written by different team members is inevitable in multi-person projects. It is

also one of the most troublesome tasks and it rarely goes smoothly.

In terms of timing and frequency, there are two general approaches to integration:

1. Late and one-time: In an extreme case of this approach, developers wait till all

components are completed and integrate all finished components just before the

release. This approach is not recommended because integration often causes many

component incompatibilities (due to previous miscommunications and

misunderstandings) to surface which can lead to delivery delays: Late integration

incompatibilities found major rework required cannot meet the delivery date.

2. Early and frequent: The other approach is to integrate early and evolve in parallel in

small steps, re-integrating frequently. For example, a working skeleton9 can be written

first (i.e. it compiles and runs but does not produce any useful output). This can be done

by one developer, possibly the one in charge of integration. After that, all developers can

flesh out the skeleton in parallel, adding one feature at a time. After each feature is done,

simply integrate the new code to the main system.

Whether using frequent integration or one-time late integration, there is still a need to decide

the order in which components are to be integrated. There are several approaches to doing this,

as explained next.

The order of integration: Big bang vs incremental

Big-bang integration
In the big-bang integration approach, all components are integrated at the same time. This

approach is not recommended since it will uncover too many problems at the same time which

could make debugging and bug-fixing more complex than when problems are uncovered more

gradually.

Incremental integration

For non-trivial integration efforts, the following three incremental integration approaches are

more suitable.

 Top-down integration: In top-down integration, higher-level components are integrated
before bringing in the lower-level components. One advantage of this approach is that
higher-level problems can be discovered early. One disadvantage is that this requires
the use of dummy or skeletal components (i.e. stubs) in place of lower level components
until the real lower-level components are integrated to the system. Otherwise, higher-
level components cannot function as they depend on lower level ones.

9 Some call it a ‘walking skeleton’

Aug 2016 edition – for NUS students only

2

 Bottom-up integration: This is the reverse of top-down integration. Advantages and
disadvantages are simply the reverse of those of the top-down approach.

 Sandwich integration: This is a mix of the top-down and the bottom-up approaches. The
idea is to do both top-down and bottom-up so as to “meet up” in the middle.

Build automation
In a non-trivial project, building a product from source code can be a complex multi-step

process. For example, it can include steps such as to pull code from the revision control system,

compile, link, run automated tests, automatically update release documents (e.g. build number),

package into a distributable, push to repo, deploy to a server, delete temporary files created

during building/testing, email developers of the new build, and so on. Furthermore, this build

process can be done ‘on demand’, it can be scheduled (e.g. every day at midnight) or it can be

triggered by various events (e.g. triggered by a code push to the revision control system).

Some of these build steps such as to compile, link and package are already automated in most

modern IDEs. For example, several steps happen automatically when the ‘build’ button of the

IDE is clicked. Some IDEs even allow customization to this build process to some extent.

However, most big projects use specialized build tools to automate complex build processes.

GNU Make (http://www.gnu.org/software/make/) and Apache Ant (http://ant.apache.org/)

are two build tools that used to be very popular about a decade ago and still being used. Two

popular build tools at the moment are Maven (http://maven.apache.org/) and Gradle

(https://gradle.org/)

Dependency Management
Modern software projects often depend on third party libraries that evolve constantly. That

means developers need to download the correct version of the required libraries and update

them regularly. Dependency Management tools can automate that aspects of a project. Maven

and Gradle, in addition to managing the build process, are dependency management tools too.

Continuous Integration
An extreme application of build automation is called continuous integration (CI) in which

integration, building, and testing happens automatically after each code change. Travis

(https://travis-ci.org/) and Jenkins (http://jenkins-ci.org) are examples of popular CI tools.

Worked examples

[Q1]
Consider the architecture given below. Describe the order in which components will be
integrated with one another if the following integration strategies were adopted.

(a) big-bang
(b) top-down
(c) bottom-up
(d) sandwich

Note that dashed arrows show dependencies (e.g. A depend on B, C, D and therefore, higher-
level than B, C and D).

http://www.gnu.org/software/make/
http://ant.apache.org/
http://maven.apache.org/
https://gradle.org/
https://travis-ci.org/
http://jenkins-ci.org/

Aug 2016 edition – for NUS students only

3

[CS2103]

A

B C D

HFE IG

K L MJ

[A1]

(a) Big-bang approach: integrate A-M in one shot.
(b) Top-down approach and (c) bottom-up approach [side by side comparison]

27

A

Integrate

A,B,C,D

Integrate

A..I

Integrate

A..M

26

C

G

Integrate

A..M

Integrate

B, E, F, J

Integrate

C,G,K,L

Integrate

D,H,M,I

Integrate

H, M

FIntegrate

E, J
IIntegrate

G, K, L

K L MJ

(d) Sandwich approach

28

A

Integrate

A,B,C,D

Integrate

H, M

FIntegrate

E, J

IIntegrate

G, K, L

K L MJ

Integrate

A..M

top-down

bottom-up

Aug 2016 edition – for NUS students only

4

[Q2]
Give two arguments in support and two arguments against the following statement.

Because there is no external client, it is OK to use big bang integration for the CS2103 module

project.

[A2]
Arguments for:

 It is relatively simple; even big-bang can succeed.

 Project duration is short; there is not enough time to integrate in steps.

 The system is non-critical, non-production (demo only); the cost of integration issues is

relatively small.

Arguments against:

 Inexperienced developers; big-bang more likely to fail

 Too many problems may be discovered too late. Submission deadline (fixed) can be

missed.

 Team members have not worked together before; increases the probability of

integration problems.

[Q3]
Suggest an integration strategy for the system represented by following diagram. You need not
follow a strict top-down, bottom-up, sandwich, or big bang approach. Dashed arrows represent
dependencies between classes.
Also take into account the following facts in your test strategy.

 HospitalUI will be developed early, so as to get customer feedback early.
 HospitalFacade shields the UI from complexities of the application layer. It simply

redirects the method calls received to the appropriate classes below
 IO_Helper is to be reused from an earlier project, with minor modifications
 Development of OutPatient component has been outsourced, and the delivery is not

expected until the 2nd half of the project.

Hospital UI

HospitalFacade

PatientMgr MedicineMgr RecordMgr

IO_Helper
<<interface>>

PatientInterface
TypeA TypeB

TypeC
OutPatient

[A3]
There can be many acceptable answers to this question. But any good strategy should consider

at least some of the below.

 Since HospitalUI will be developed early, it’s OK to integrate it early, using stubs, rather

than wait for the rest of the system to finish. (i.e. a top-down integration is suitable for

HospitalUI)

Aug 2016 edition – for NUS students only

5

 Because HospitalFacade is unlikely to have a lot of business logic, it may not be worth

to write stubs to test it (i.e. a bottom-up integration is better for HospitalFacade).

 Since IO_Helper is to be reused from an earlier project, we can finish it early. This is

especially suitable since there are many classes that use it. Therefore IO_Helper can be

integrated with the dependent classes in bottom-up fashion.

 Since OutPatient class may be delayed, we may have to integrate PatientMgr using a

stub.

 TypeA, TypeB, and TypeC seem to be tightly coupled. It may be a good idea to test them

together.

Given below is one possible integration test strategy. Relative positioning also indicates a rough

timeline.

Hospital_UI

All except

Hospital_UI

PatientMgr

IO_Helper

MedicineMgr, IO_Helper

TypeA, TypeB, TypeC

RecordMgr

TypeA, TypeB, TypeC

IO_Helper

IO_Helper

TypeA

TypeB

TypeC

OutPatient

All

time

-- End of handout --

