
Aug 2016 edition – for NUS students only

1

[L8P1]

Herding Cats: Making Teams Work

Work Breakdown Structure (WBS)
Before starting project work, it is useful to divide the total work into smaller, well-defined units.

Relatively complex tasks can be further split into subtasks. Commonly, the high-level tasks that

represent the overall software development stages are first defined, followed by a detailed

version containing information about subtasks. A structure that depicts the above information

about tasks and their details in terms of subtasks is known as a work breakdown structure. In

complex projects a WBS can also include prerequisite tasks and effort estimates for each task.

For the Minesweeper example, the high level tasks for a single iteration could look like the

following:

Task Id Task Estimated Effort
Prerequisite

Task

A Analysis 1 man day -

B Design 2 man day A

C Implementation 4.5 man day B

D Testing 1 man day C

E Planning for next version 1 man day D

The effort is traditionally measured in man hour/day/month i.e. work that can be done by one

person in one hour/day/month. The Task Id is a label for easy reference to a task. Simple

labeling is suitable for a small project, while a more informative labeling system can be adopted

for bigger projects. The high level tasks structure can be further refined into subtasks. For

example, the above table can be further refined to:

Task Id Task Estimated Effort
Prerequisite

Task

A High level design 1 man day -

B

Detail design

1. User Interface

2. Game Logic

3. Persistency Support

2 man day

 0.5 man day

 1 man day

 0.5 man day

A

C

Implementation

1. User Interface

2. Game Logic

3. Persistency Support

4.5 man day

 1.5 man day

 2 man day

 1 man day

 B.1

 B.2

 B.3

D System Testing 1 man day C

E Planning for next version 1 man day D

Aug 2016 edition – for NUS students only

2

All tasks should be well-defined. In particular, it should be clear as to when the task will be

considered “done”. E.g.

not good: more coding | better: implement component X

not good: do research on UI testing | better: find a suitable tool for testing the UI

Scheduling and tracking
Milestones

In projects, a milestone is the end of a stage which indicates a significant progress. For example,

each intermediate product release is a milestone. Take into account dependencies and priorities

when deciding on the features to be delivered at a certain milestone.

In some projects, it is not practical to have a very detailed plan for the whole project due to the

uncertainty and unavailability of required information. In such cases, consider a high-level plan

for the whole project and a detailed plan for the next few weeks.

Here is an example: [Note that the scope of the task is defined by the product version that is to

be released at the next milestone. i.e. TextUi means “Text UI for V0.1”]

Project schedule (contd)

Day 1 Day 2-5 Day 6 Day 7

Jean Write MSLogic skeleton MSLogic

Te
st

in
g

b
ef

o
re

 r
el

ea
se

Fi
n

e-
tu

n
in

g
an

d
/o

r
p

la
n

n
in

g

th
e

n
ex

t
ve

rs
io

n

James Specify test case format

for automated tester

Automated tester

Kumar Circulate meeting minutes TextUI

Chunling Update project manual (in

point form)

test cases

390

[Ch.8]

Buffers

It is important to include buffers (i.e. time set aside to absorb any unforeseen delays). Do not

inflate tasks to create hidden buffers. Have them explicitly set aside.

Task X Task Y

Task X Task YBuffer Buffer

Estimates

Schedule (using inflated estimates)

Schedule (using buffers)

Task X Task Y

Bug/Issue trackers

Issue trackers (sometimes called bug trackers) are commonly used to track task assignment and

progress. E.g. Bugzilla. Most online project management software such as GoogleCode, GitHub,

SourceForge and BitBucket come with an integrated issue tracker. The following is a screenshot

from the Jira Issue tracker software.

Aug 2016 edition – for NUS students only

3

Issue trackers can also be used as task trackers, i.e. to define tasks to be done, to track who is

doing what, and the status of each task.

More elaborate tools for scheduling and tracking projects include PERT chars and Gantt charts.

PERT (Program Evaluation Review Technique) charts

PERT chart uses a graphical technique to show the order/sequence of tasks. It is based on a

simple idea of drawing a directed graph in which:

 Node or vertex captures the effort estimation of a task, and
 Arrow depicts the precedence between tasks

Here is a PERT chart for the Minesweeper example:

With the above chart, it is much easier to determine the order of a particular task. For example,

observe that the Final Testing phase cannot begin until all coding of individual subsystems have

A. High

level

design

1 md

B.1 UI Design

0.5 md

E.

Planning

1md

B.2 Game

Logic Design

1 md

B.3

Persistency

Support

Design

0.5 md

C.1 UI Coding

1.5 md

C.2 Game

Logic Coding

2 md

C.3

Persistency

Support

Design

1 md

D. Final

Testing

1 md

Aug 2016 edition – for NUS students only

4

been completed. Also, is it easy to determine the concurrent tasks that can proceed upon

completion of the prerequisite task(s). For example, the various subsystem designs can start

independently once the High level design is completed. The depiction of parallel tasks facilitates

the optimal utilization of manpower.

A closely related issue is estimating the shortest possible completion time. From the above PERT

chart, there is a path (indicated by the shaded boxes) from start to end that determines the

longest possible completion time. This path is given the name Critical Path to emphasize that it

is critical to ensure tasks on this path are completed on time. Any delay would directly affect the

delivery time for the project.

Gantt charts

Despite the usefulness of PERT charts, there is a shortfall. As each node only shows the elapsed

time of a task, it is hard to see the actual start and end time of the node. A Gantt chart is a

graphical tool designed specifically for this purpose. The basic idea is to have a 2-D bar-chart,

drawn as time vs tasks to be performed (represented by horizontal bars). Using minesweeper

as an example:

In the chart, a solid bar represents the main task, which is generally composed of a number of

subtasks, shown as grey bars. The diamond shape indicates an important deadline or

deliverable or a milestone.

Here are some of points to note about scheduling and tracking:

 Manpower allocation is not just arithmetic: Only a simplistic view has been presented so
far, which might lead one to think that adding manpower to a task would reduce the time
needed by a proportional amount. However, Brook’s law, by Frederick Brooks, states that:
“Adding more manpower to an already late project makes it even later”. It may sound
counter-intuitive, but the reasons are simple: a newly assigned team member requires time
to understand the existing system before he/she can be productive. Secondly, adding
manpower also increases the communication overhead. Do not forget that a typical task

Aug 2016 edition – for NUS students only

5

might not be easily split into totally independent subunits. As such, frequent
synchronization between team members can take a significant amount of time. Take this
into consideration when assigning more than one person to a task, and adjust the estimated
time accordingly.

 Progress chart is not progress itself: Having a complex chart does not equate to
accomplishing a lot of tasks. The various charts are just tools to monitor project progress,
and real work must still be done on the tasks to push the project forward. In the same vein,
do not spend too much time on chart drawing.

 Use reasonable estimates: Assigning the minimum possible time to each of the tasks may
make the project seem well under control, but it will do the team more harm than good if
the schedule has to be adjusted frequently due to overly optimistic estimations.

Team structures

Given below are three commonly used team structures in software development. Irrespective of

the team structure, it is a good practice to assign roles and responsibilities to different team

members so that someone is clearly in charge of each aspect of the project. In comparison, the

‘everybody is responsible for everything’ approach can result in more chaos and hence slower

progress.

385

Team structures

The team structure is the basis for communication (e.g., who to ask
when you need more info), responsibility (e.g., who is responsible
for what aspect), authority (e.g., who reports to whom) etc. The
team structure can take many forms. Here are some examples.

egoless team chief-programmer strict-hierarchy

[Ch.8]

Egoless team

In this structure, every team member is equal in terms of responsibility and accountability.

When any decision is required, consensus must be reached. This team structure is also known

as a democratic team structure. This team structure usually finds a good solution to a relatively

hard problem as all team members contribute ideas.

However, the democratic nature of the team structure bears a higher risk of falling apart due to

the absence of an authority figure to manage the team and resolve conflicts.

Chief programmer team

Frederick Brooks proposed that software engineers learn from the medical surgical team in an

operating room. In such a team, there is always a chief surgeon, assisted by experts in other

areas. Similarly, in a chief programmer team structure, there is a single authoritative figure, the

chief programmer. Major decisions, e.g. system architecture, are made solely by him/her and

obeyed by all other team members. The chief programmer directs and coordinates the effort of

other team members. When necessary, the chief will be assisted by domain specialists e.g.

business specialists, database expert, network technology expert, etc. This allows individual

group members to concentrate solely on the areas where they have sound knowledge and

expertise.

The success of such a team structure relies heavily on the chief programmer. Not only must he

be a superb technical hand, he also needs good managerial skills. Under a suitably qualified

leader, such a team structure is known to produce successful work. .

Aug 2016 edition – for NUS students only

6

Strict hierarchy team
In the opposite extreme of an egoless team, a strict hierarchy team has a strictly defined

organization among the team members, reminiscent of the military or bureaucratic government.

Each team member only works on his assigned tasks and reports to a single “boss”.

In a large, resource-intensive, complex project, this could be a good team structure to reduce

communication overhead.

