
Aug 2016 edition – for NUS students only

1

[L8P3]

Heuristics for Better Test Case Design

Test case design approaches
Exploratory testing vs scripted testing
Previously, two alternative approaches to test case design were discussed: exploratory vs

scripted. That distinction was based on when the test cases are designed. In scripted approach,

they are designed in advance. In the exploratory approach, they are designed on the fly.

Given next are alternative approaches based on some other aspects of testing.

Black-box vs white-box
This categorization is based on how much of SUT (software under test) internal details are

considered when designing test cases. In the black-box approach, also known as specification-

based or responsibility-based testing, test cases are designed exclusively based on the SUT’s

specified external behavior. In the white-box approach, also known as glass-box or structured or

implementation-based testing, test cases are designed based on what is known about the SUT’s

implementation, i.e. the code.

Knowing some important information about the implementation can help in black-box testing.

This kind of testing is sometimes called gray-box testing. For example, if the implementation of a

sort operation uses an algorithm to sort lists shorter than 1000 items and another to sort lists

longer than 1000 items, more meaningful test cases can then be added to verify the correctness

of both algorithms.

Test case design techniques

Testing all possible ways of using the SUT requires writing an infinite number of test cases. For

example, consider the test cases for adding a String object to a Collection:

 Add an item to an empty collection.

 Add an item when there is one item in the collection.

 Add an item when there are 2, 3, n items in the collection.

 Add an item that has an English, a French, a Spanish, … word.

 Add an item that is the same as an existing item.

 Add an item immediately after adding another item.

 Add an item immediately after system startup.

 ...

Exhaustive testing of this operation can take many more test cases. As you can see from the

example above, except for trivial systems, exhaustive testing is not possible!

Program testing can be used to show the presence of bugs, but never to show their absence!

--Edsger Dijkstra

Every test case adds to the cost of testing. In some systems, a single test case can cost thousands

of dollars (e.g. on-field testing of flight-control software). Therefore, test cases have to be

designed to make the best use of testing resources. In particular:

 Testing should be effective, i.e. it finds a high % of existing bugs. A set of test cases that
finds 60 defects is more effective than a set that finds only 30 defects in the same
system.

Aug 2016 edition – for NUS students only

2

 Testing should be efficient, i.e. it has a high rate of success (bugs found/test cases). A set
of 20 test cases that finds 8 defects is more efficient than another set of 40 test cases that
finds the same 8 defects.

Given below are various tools and techniques used to improve E&E (Effectiveness and

Efficiency) of testing.

Equivalence partitioning

Consider the testing of the following operation.

isValidMonth (int m): boolean

Description: checks if m is in the range [1..12]. returns true if m is in the range, false

otherwise.

It is inefficient and impractical to test this method for all integer values [-MIN_INT to MAX_INT].

Fortunately, there is no need to test all possible input values. For example, if the input value 233

failed to produce the correct result, the input 234 is likely to fail too; there is no need to test

both. In general, most SUTs do not treat each input in a unique way. Instead, they process all

possible inputs in a small number of distinct ways. That means a range of inputs is treated the

same way inside the SUT. Testing one of the inputs for a given range should be as good as

exhaustively testing all inputs in that range.

Equivalence partitioning (EP) is a technique that uses the above observation to improve the

efficiency and effectiveness of testing. By dividing possible inputs into groups which are likely to

be processed similarly by the SUT, testing every possible input in each group is avoided. Such

groups of input are called equivalence partitions (or equivalence classes). Equivalence

partitioning can minimize test cases that are unlikely to find new bugs.

Equivalence partitions are usually derived from the specifications of the SUT. Preconditions and

postconditions can also help in identifying partitions. For example, these could be equivalence

partitions for the isValidMonth example:

 [MIN_INT ... 0] (below the range that produces ‘true’)

 [1 … 12] (the range that produces ‘true’)

 [13 … MAX_INT] (above the range that produces ‘true’)

Note that the equivalence partitioning technique does not suggest the number of test cases to

pick from each partition. It depends on how thorough the test is.

Here’s an example from an OO system. Consider the Minesweeper system that was explored

previously. What are the equivalence partitions for the newGame() operation of the Logic

component? In general, equivalence partitions of all data participants8 that take part in the

operation have to be considered. These include

 the target object of the operation call,
 input parameters of the operation call,
 and other data/objects accessed by the operation such as global variables.

Since newGame() does not have any parameters, the only participant is the Logic object itself.

Note that if the glass-box or the grey-box approach is used, other associated objects that are

involved in the operation might also be included as participants. For example, Minefield object

8 We use the term “data participants” to mean both objects and primitive values. Note that this is not a
standard term

Aug 2016 edition – for NUS students only

3

can be considered as another participant of the newGame() operation. Here, the black-box

approach is assumed.

Next, identify equivalence partitions for each participant. Will the newGame operation behave

differently for different Logic objects? If yes, how will it differ? In this case, yes, it might behave

differently based on the game state. Therefore, the equivalence partitions are: PRE_GAME (i.e.

before the game starts, minefield does not exist yet), READY (i.e. a new minefield has been

created and waiting for player’s first move), IN_PLAY, WON, LOST.

Here’s another example. Consider the markCellAt(int x, int y) operation of the Logic component.

Applying the technique described above, the equivalence partitions for the markCellAt operation

can be obtained. The partitions in bold (green) represent valid inputs. Here, a Minefield of size

WxH is assumed :

 Logic: PRE_GAME, READY, IN_PLAY, WON, LOST

 x: [MIN_INT..-1] [0..(W-1)] [W..MAX_INT]

 y: [MIN_INT..-1] [0..(H-1)] [H..MAX_INT]

 Cell at (x,y): HIDDEN, MARKED, CLEARED

Here’s another example. Consider the push operation from a DataStack class.

Operation: push(Object o): boolean

Description: Throws MutabilityException if the global flag FREEZE==true

 Else, throws InvalidValueException if o==null.

 Else, returns false if the stack is full.

 Else, puts o at the top of the DataStack and returns true.

Here are the equivalence partitions for the push operation.

 DataStack object (ds): [full] [not full]

 o: [null] [not null]

 FREEZE: [true][false]

A test case for the push operation can be a combination of the equivalence partitions. Given

below is such a test case.

id: DataStack_Push_001

description: checks whether pushing onto a full stack works correctly

input: ds is full, o!=null, FREEZE==false

expected output: returns false, ds remains unchanged

How are equivalence partitions combined and how many test cases to create? This question is

addressed later in this handout. Moreover, the expected output should specify the return value

as well as the state of all data participants of the operation that may be changed during the

operation.

Knowledge of how the SUT behaves is used when deriving equivalence partitions for a given

data participant. The table below illustrates some examples. However, note that the EP

technique is merely a heuristic and not an exact science. The partitions derived depend on how

one ‘speculates’ the SUT to behave internally. Applying EP under a glass-box or gray-box

approach can yield more precise partitions.

Aug 2016 edition – for NUS students only

4

Specification Equivalence partitions

isValidFlag(String s): boolean

Returns true if s is one of [“F”, “T”, “D”]. The

comparison is case-sensitive.

[“F”] [“T”] [“D”] [“f”, “t”, “d”] [any other

string][null]

squareRoot(String s): int

Pre-conditions: s represents a positive

integer

Returns the square root of s if the square

root is an integer; returns 0 otherwise.

[s is not a valid number] [s is a negative

integer] [s has an integer square root] [s does

not have an integer square root]

isPrimeNumber(int i): boolean

Returns true if i is a prime number

[prime numbers] [non-prime numbers]

* there are too many prime numbers to

consider each one as a separate equivalence

partition

When a data participant of an SUT is expected to be a subtype of a given type, each subtype that

has a bearing on the SUT’s behavior should be treated as a separate equivalence partition. For

example, consider the following operation.

Operation: compare(Expression first, Expression second): boolean

Description: returns true if both expressions evaluate to the same value

If the Expression is an abstract class which has two sub-classes Sum and Product, then the

operation has to be tested for both parameter types Sum and Product.

Boundary Value Analysis

Boundary value analysis is another heuristic that can enhance the E&E of test cases designed

using equivalence partitioning. It is based on the observation that bugs often result from

incorrect handling of boundaries of equivalence partitions. This is not surprising, as the end

points of the boundary are often used in branching instructions etc. where the programmer can

make mistakes.

E.g. markCellAt(int x, int y) operation could contain code such as

if (x > 0 && x <= (W-1)) which involves boundaries of x’s equivalence partitions.

When doing boundary value analysis, values around the boundary of an equivalence partition

are tested. Typically, three values are chosen: one value from the boundary, one value just

below the boundary, and one value just above the boundary. The table below gives some

examples of boundary values.

Equivalence partition Some possible boundary values

[1-12] 0,1,2, 11,12,13

[MIN_INT, 0]

*MIN_INT is the minimum possible

integer value allowed by the

MIN_INT, MIN_INT+1, -1, 0 , 1

Aug 2016 edition – for NUS students only

5

environment.

[any non-null String] Empty String, a String of maximum possible length

[prime numbers],

[“F”]

 [“A”, “B”, “C”]

No specific boundary

No specific boundary

No specific boundary

[non-empty Stack] *we assume a fixed

size stack

Stack with: one element, two elements, no empty

spaces, only one empty space

Combining multiple inputs

Often, an SUT can take multiple data participants. Having selected test values for each data

participant (using equivalence partitioning, boundary value analysis, or some other technique),

how are they combined to create test cases? Consider the following scenario.

Operation to test:

calculateGrade(participation, projectScore, isAbsent, examScore)

Values to test (invalid values are underlined)

 participation: 0, 1, 19, 20, 21, 22

 projectScore: A, B, C, D, F

 isAbsent: true, false

 examScore: 0, 1, 69, 70, 71, 72

Given next are some techniques that can be used.

All combinations - This technique has a higher chance of discovering bugs. However, the

number of combinations can be too high to test. In the above example, there are 6x5x2x6=360

cases to be tested.

At least once – This technique, illustrated in the table below, aims to include every value at

least once.

Table 1. Test cases for calculateGrade (V1.0)

Case No participation projectScore isAbsent examScore Expected

1 0 A true 0 …

2 1 B false 1 …

3 19 C AVV 69 …

4 20 D AVV 70 …

5 21 F AVV 71 Err Msg

6 22 AVV AVV 72 Err Msg

AVV = Any Valid Value, Err Msg = Error Message

Aug 2016 edition – for NUS students only

6

This technique uses one test case to verify multiple input values. For example, test case 1

verifies SUT for participation==0, projectScore==A, isAbsent==true, and examScore==0. However,

the expected result for test case 5 could be an error message, because of the invalid input data.

This means that it remains unknown whether the SUT works correctly for the projectScore==F

input as it is not being used by the other four test cases that do not produce an error message.

Furthermore, if the error message was due to participation==21 then it does not guarantee that

examScore==71 will also return the correct error message. This is why invalid input values

should be tested one at a time, and not combined with the testing of valid input values. Doing

this will result in nine test cases, as shown in the table below.

Table 2. Test cases for calculateGrade (V2.0)

Case No participation projectScore isAbsent examScore expected

1 0 A true 0 …

2 1 B false 1 …

3 19 C AVV 69 …

4 20 D AVV 70 …

5 AVV F AVV AVV …

6 21 AVV AVV AVV Err Msg

7 22 AVV AVV AVV Err Msg

8 AVV AVV AVV 71 Err Msg

9 AVV AVV AVV 72 Err Msg

Other links between parameters can increase the number of test cases further. For example,

assuming that an absent student can only have examScore==0, a link between isAbsent and

examScore is established. To cater for the hidden invalid case arising from this, a 10th test case is

added for which isAbsent==true and examScore!=0. In addition, test cases 3-9 should have

isAbsent==false so that the input remains valid.

Aug 2016 edition – for NUS students only

7

Table 0.3. Test cases for calculateGrade (V3.0)

Case No participation projectScore isAbsent examScore Expected

1 0 A true 0 …

2 1 B false 1 …

3 19 C false 69 …

4 20 D false 70 …

5 AVV F false AVV …

6 21 AVV false AVV Err Msg

7 22 AVV false AVV Err Msg

8 AVV AVV false 71 Err Msg

9 AVV AVV false 72 Err Msg

10 AVV AVV true !=0 Err Msg

All-pairs – This technique creates test cases so that for any given pair of parameters, all

combinations between them are tested. It is based on the observations that a bug is rarely the

result of more than two interacting factors. The resulting number of test cases is lower than the

“all combinations” approach, but higher than the “at least once” approach. The technique for

creating such a set of test cases is beyond the scope of this handout.

Testing use cases

Use case testing is straightforward in principle: test cases are simply based on the use cases. It is

used for system testing (i.e. testing the system as a whole). For example, the main success

scenario can be one test case while each variation (due to extensions) can form another test

case. However, note that use cases do not specify the exact data entered into the system.

Instead, it might say something like “user enters his personal data into the system”. Therefore,

the tester has to choose data by considering equivalence partitions and boundary values. The

combinations of these could result in one use case producing many test cases. To increase E&E

of testing, high-priority use cases are given more attention. For example, a scripted approach

can be used to test high priority test cases, while an exploratory approach is used to test other

areas of concern that could emerge during testing.

Worked examples

[Q1]
a) Explain the concept of exploratory testing using Minesweeper as an example.

b) Explain why exhaustive testing is not possible using the newGame operation (from Logic

class in the Minesweeper case study) as an example.

[A1]
(a) When we test the Minesweeper by simply playing it in various ways, especially trying out

those that are likely to be buggy, that would be exploratory testing.

b) Consider this sequence of test cases:

Aug 2016 edition – for NUS students only

8

Test case 1. Start Minesweeper. Activate newGame() and see if it works.

Test case 2. Start Minesweeper. Activate newGame(). Activate newGame() again and see

if it works.

Test case 3. Start Minesweeper. Activate newGame() three times consecutively and see if

it works.

…

Test case 267. Start Minesweeper. Activate newGame() 267 times consecutively and see

if it works.

Well, you get the idea. Exhaustive testing of newGame() is not possible.

[Q2]
Assume students are given matriculation number according to the following format:

[Faculty Alphabet] [Gender Alphabet] [Serial Number] [Check Alphabet]

E.g. CF1234X

The valid value(s) for each part of the matriculation number is given below:

Faculty Alphabet:

• Single capital alphabet

• Only 'C' to 'G' are valid

Gender Alphabet:

• Single capital alphabet

• Either 'F' or 'M' only

Serial Number

• 4-digits number

• From 1000 to 9999 only

Check Alphabet

• Single capital alphabet

• Only 'K', 'H', 'S', 'X' and 'Z' are valid

Assume you are testing the operation isValidMatric(String matric):boolen. Identify equivalence

partitions and boundary values for the matriculation number.

[A2]
String length: (less than 7 characters), (7 characters), (more than 7 characters)

For those with 7 characters,

[Faculty Alphabet]: (‘C’, ‘G’), (‘c’, ‘g’), (any other character)

[Gender Alphabet]: (‘F’, ‘M’), (‘f’, ‘m’), (any other character)

[Serial Number]: (1000-9999), (0000-0999), (any other 4- characters string)

[Check Alphabet]: ('K', 'H', 'S', ‘X’, 'Z'), ('k', 'h', ’s’, ‘x’, 'z'), (any other character)

Aug 2016 edition – for NUS students only

9

[Q3]
Given below is the overview of the method dispatch(Resource, Task), from an emergency
management system (e.g. a system used by those who handle emergency calls from the public
about incidents such as fires, possible burglaries, domestic disturbances, etc.). A task might need
multiple resources of multiple types. For example, the task ‘fire at Clementi MRT’ might need
two fire engines and one ambulance.

dispatch(Resource r, Task t):void

Overview: This method dispatches the Resource r to the Task t. Since this can dispatch

only one resource, it needs to be used multiple times should the task need multiple

resources.

Imagine you are designing test cases to test the method dispatch(Resource,Task). Taking into

account equivalence partitions and boundary values, which different inputs will you combine to

test the method?

[A3]
Test input for r Test input for t

 A resource required by the task

 A resource not required by the task

 A resource already dispatched for

another task

 null

 A fully dispatched task

 A task requiring one more resource

 A task with no resource dispatched

Considering the resource types required

 A task requiring only one type of

resources

 A task requiring multiple types of

resource

 null

[Q4]
Given below is an operation description taken from a restaurant booking system. Use

equivalence partitions and boundary value analysis technique to design a set of test cases for it.

boolean transferTable (Booking b, Table t)

Description: Used to transfer a Booking b to Table t, if t has enough room.

Preconditions: t has room for b , b.getTable() != t

Postconditions: b.getTable() == t

[A4]
Equivalence partitions

Booking:

Invalid: null, not null and b.getTable==t

Valid: not null and b.getTable != t

Table:

Invalid: null, not vacant, vacant but doesn’t have enough room,

Aug 2016 edition – for NUS students only

10

Valid: vacant and has enough room.

Boundary values:

Booking:

Invalid: null, not null and b.getTable==t

Valid:not null and b.getTable != t

Table:

Invalid: null, not vacant, (booking size == table size + 1)

Valid: (booking size == table size), (booking size == table size-1)

Test cases:

Test case Booking Table

1 null Any valid

2 not null and b.getTable==t Any valid

3 Any valid null

4 Any valid not vacant

5 Any valid (booking size == table size + 1)

7 Any valid (booking size == table size)

8 Any valid (booking size == table size-1)

Note: We can use Bookings of different sizes for different test cases so that we increase the

chance of finding bugs. If there is a minimum and maximum booking size, we should include

them in those test cases.

[Q5]
Assume you are testing the add(Item) method specified below.

add(Item):void
contains(Item):boolean
count():int

ItemList

Assume i to be the Item being added.

Preconditions:

i != null [throws InvalidItemException if i == null]

contains(i) == false [throws DuplicateItemException if contains(i) == true]

count() < 10 [throws ListFullException if count() == 10]

Postconditions:

contains(i) == true;

new count() == old count()+1

Aug 2016 edition – for NUS students only

11

Invariants: (an “invariant” is true before and after the method invocation).

0 <= count() <= 10

(a) What are the equivalence partitions relevant to testing the add(Item) method?

(b) What are the boundary and non-boundary values you will use to test the add(Item) method?

(c) Design a set of test cases to test the add(Item) method by considering the equivalence

partitions and boundary values from your answers to (a) and (b) above.

[A5]
(a)

i: i != null, i == null

list: contains(i)==true, contains(i)==false, count() < 10, count() == 10

list == null should NOT be considered.

 (b) list: count()==0, count()==9, count()==10; count()== [1|2|3|4|5|6|7|8] (1 preferred)

(c)

count == 0

count == 1

count == 9

!contains

count == 10

contains

i==null

i!=null

[Q6]
Use equivalence partitions and boundary values to choose test inputs for testing the setWife

operation in the Man class.

Man Woman
0..1 0..1

husband wife

setWife(Woman):void
getWife():Woman

setHusband(Man):void
getHusband():Man

Aug 2016 edition – for NUS students only

12

 [A6]

Man
[3 partitions]

married

single

To the same
woman

To a different
woman

Woman
[4 partitions]

married

single

To the same
man

To a different
man

null

Partitioning ‘married’ as ‘to same woman’ and ‘to different woman’ seems redundant at first.

Arguments for having it:

 The behavior (e.g. the error message shown) may be different in those two situations.

 The ‘to same woman’ partition has a risk of misunderstanding between developer and

user. For example, the developer might think it is OK to ignore the request while the

users might expect to see an error message.

[Q7]

b) Identify a set of equivalence partitions for testing isValidDate(String date) method. The method

checks if the parameter date is a day that falls in the period 1880/01/01 to 2030/12/31 (both

inclusive). The date is given in the format yyyy/mm/dd.

[A7]
Initial partitions: [null] [10 characters long][shorter than 10 characters][longer than 10

characters]

For 10-character strings:

 c1-c4: [not an integer] [less than 1880] [1880-2030 excluding leap years][leap years

within 1880-2030 period][2030-9999]

 c5: [‘/’][not ‘/’]

 c6-c7: [not an integer][less than 1][2][31-day months: 1,3,5, 7,8, 10,12][30-day

months: 4,6,9,11] [13-99]

 c8: [‘/’][not ‘/’]

 c9-c10: [not an integer][less than 1][1-28][29][30][31][more than 31]

In practice, we often use ‘trusted’ library functions (e.g. those that come with the Java JDK or

.NET framework) to convert strings into dates. In such cases, our testing need not be as

thorough as those suggested by the above analysis. However, this kind of thorough testing is

required if you are the person implementing such a trusted component.

Aug 2016 edition – for NUS students only

13

[Q8]
Consider the following operation that activates an alarm when the landing gear (i.e. wheels

structure) of an airplane should be deployed but has not been deployed.

isAlarmToBeSounded(timeSinceTakeOff,

timeToLand,

altitude,

visibility,

isGearAlreadyDeployed):boolean

Here is the logic for the operation. Landing gear must be deployed whenever the plane is within

2 minutes before landing or after takeoff, or within 2000 feet from the ground. If visibility is less

than 1000 feet, then the landing gear must be deployed whenever the plane is within 3 minutes

from landing or lower than 2500 feet. The operation should return true if the landing gear is not

deployed (i.e. isGearAlreadyDeployed ==false) on meeting a deployment condition. Assume that

the smallest unit of measurement for time is 1s and for distance it is 1 feet. Also, assume that

invalid input such as negative values will not be produced by the sensors. takeoff_max,

landing_max, altitude_max, visibility_max are the maximum values allowed by the instruments.

(a) List the equivalence partitions of the conditions that can lead to a decision about whether

the alarm should be sounded.

(b) List the boundary and non-boundary values you will test, using no more than one non-

boundary value per equivalence partition.

(c) Typically, for a critical system such as the “landing gear alarm system”, all combinations of

equivalence partitions must be checked. Ignoring that requirement for a moment, design a

minimal set of test cases that includes each equivalence partition at least once. Use only

boundary values.

(d) Now, you have been told that the correct functioning of the alarm is critically important if

the plane is within 2 minutes of landing no matter what the other conditions are. How would

you modify the test cases? Use only boundary values.

[A8]
(a) Equivalence partitions:

timeSinceTakeOff: [0s .. 2m] [2m1s .. takeoff_max]

timeToLand : [land_max.. 3m1s][3m .. 2m1s] [2m .. 0s]

altitude: [0 .. 2000], [2001 .. 2500], [2501 .. altitude_max]

visibility: [0 .. 1000], [1001 .. visibility_max]

isGearAlreadyDeployed: [true] [false]

(b) take all values mentioned in (a), and one non-boundary value for each partition. For

example,

timeSinceTakeOff: 0s, 1m, 2m, 2m1s, 3m, takeoff_max

(c) To test every partition at least once, we need only three test cases.

Aug 2016 edition – for NUS students only

14

timeSinceTakeOff timeToLand altitude visibility isGearAlreadyDeployed

0s land_max 0 0 [true]

2m1s 3m 2001 1001 [false]

-any value- 2m 2501 -any value- -any value-

[Not required by the question] To test every boundary value at least once, we need six test

cases.

timeSinceTakeOff timeToLand altitude visibility isGearAlreadyDeployed

0s land_max 0 0 [true]

2m0s 3m1s 2000 1000 [false]

2m1s 3m 2001 1001 -any value-

takeoff_max 2m1s 2500 visibility_max -any value-

-any value- 2m 2501 -any value- -any value-

-any value- 0s altitude_max -any value- -any value-

(d) Values 2m and 0s for the timeToLand should be combined with every possible combination

of the other four inputs.

For TimeToLand ==2m -> 4x6x4x2 -> 192 test cases

For TimeToLand == 0s -> 4x6x4x2 -> 192 test cases

For TimeToLand == land_max, 3m1s, 3m, 2m1s -> 4 test cases

In total we need 192+192+4=388 test cases.

We can also test a non-boundary value from the critical equivalence partition (e.g. timeToLand

==1m), in which case, we will have an additional 192 test cases.

