
Aug 2016 edition – for NUS students only

1

[L9P1]

The M in RTFM: When Code Is Not Enough

Writing developer documentation
Developer-to-developer documentation can be in one of two forms:

1. Documentation for developer-as-user: Software components are written by developers
and used by other developers. Therefore, there is a need to document as to how the
components are to be used. API documents form the bulk of this category.

2. Documentation for developer-as-maintainer: There is a need to document how a system
or a component is designed, implemented and tested so that other developers can
maintain and evolve the code.

Writing documentation of the first kind is easier because a component with a well-defined API

exposes functionality in small-sized, independent and easy-to-use chunks. Examples of such

documentation can be found in the Java API (http://download.oracle.com/javase/8/docs/api/).

Writing documentation of the second type is harder because of the need to explain complex

internal details of a non-trivial system. Given below are some points to note when writing the

second type of documentation.

Go top-down, not bottom-up

When writing project documents, a top-down breadth-first explanation is easier to understand

than a bottom-up one. To explain a system called SystemFoo with two sub-systems, front-end

and back-end, start by describing the system at the highest level of abstraction, and

progressively drill down to lower level details. An outline for such a description is given below.

[First, explain what the system is, in a black-box fashion (no internal details, only the external

view).]

SystemFoo is a

[Next, explain the high-level architecture of SystemFoo, referring to its major components only.]

SystemFoo consists of two major components: front-end and back-end.

The job of front-end is to ... while the job of back-end is to ...

And this is how front-end and back-end work together ...

[Now we can drill down to front-end's details.]

front-end consists of three major components: A, B, C

A's job is to ... B's job is to... C's job is to...

And this is how the three components work together ...

[At this point, further drill down the internal workings of each component. A reader who is not

interested in knowing nitty-gritty details can skip ahead to the section on back-end.]

...

[At this point drill down details of the back-end.]

...

The main advantage of this approach is that the document is structured like an upside down

tree (root at the top) and the reader can travel down a path he is interested in until he reaches

the component he has to work in, without having to read the entire document or understand the

whole system.

http://download.oracle.com/javase/8/docs/api/

Aug 2016 edition – for NUS students only

2

 'Accurate and complete' is not enough

Documentation that is “accurate and complete” is not going to be very effective. In addition to

accuracy and completeness, a document should be easy and pleasant to read. That is to say, it is

not enough to be comprehensive, it should also be comprehensible. The following are some tips on

writing effective documentation.

 Use plenty of diagrams: It is not enough to explain something in words; complement it
with visual illustrations (e.g. a UML diagram).

 Use plenty of examples: When explaining algorithms, show a running example to
illustrate each step of the algorithm, in parallel to worded explanations.

 Use simple and direct explanations: Convoluted explanations and fancy words will
annoy readers. Avoid long sentences.

 Get rid of statements that do not add value. For example, 'We made sure our system
works perfectly' (who didn't?), 'Component X has its own responsibilities' (of course it
has!).

Do not duplicate text chunks

When describing several similar algorithms/designs/APIs, etc., do not simply duplicate large

chunks of text. Instead, describe the similarity in one place and emphasize only the differences

in other places. It is very annoying to see pages and pages of similar text without any indication

as to how they differ from each other.

Make it as short as possible

Aim for 'just enough' documentation. The readers are developers who will eventually read the

code. The documentation complements the code and provides just enough guidance to get

started. Anything that is already clear in the code need not be described in words. Instead, focus

on providing higher level information that is not readily visible in the code or comments.

Explain things, not list diagrams

It is not a good idea to have separate sections for each type of artifact, such as 'use cases',

'sequence diagrams', 'activity diagrams', etc. Such a structure, coupled with the blatant inclusion

of diagrams without justifying their need, indicates a failure to understand the purpose of

documentation. Include diagrams when they are needed to explain the system. If it is a must to

provide a comprehensive collection of diagrams, include them in the appendix as a reference.

