
Programming Language Concepts, CS2104
Lab/Assignment 0 (Lab Session, 3-6pm, 24th Aug 2007)
Deadline for Lab0 : 5pm 28Aug 2007 Tue (submit via IVLE)

CS2104 is a 4 credit points module (written final exam 50%, 2 midterm exams 25%,
lab/tutorial assignments 25%). The module homepage is
http://www.comp.nus.edu.sg/~cs2104 and IVLE. Teaching means lectures and combined
tutorials/lab sessions (labs). Lectures are based of the book:

� Peter Van Roy, Seif Haridi: Concepts, Model, and Techniques of Computer
Programming, The MIT Press, 2004

The main purposes of tutorials are: for self-assessment, revise material from lectures,
answer questions, allow deep understanding, prepare labs assignments. Tutorials
comprise simple assignments, and are good exercises for the exam. You may discuss
tutorials/chapters on the IVLE discussion groups. There will be five lab assignments
(please submit in time).

Overview

� This lab/assignment should be done individually.
� At the end of lab/assignment, you should have Mozart running on your computer.
� Try the examples that have been introduced in the first lecture together with some

similar functions.
� Use the time available to ask questions!
� Ask your friends.
� You can also ask on IVLE’s discussion group of Chapter 1.

Useful Software

� http://www.mozart-oz.org/
� programming language: Oz
� system: Mozart (1.3.0, released on April 15, 2004)
� interactive system

� Requires Emacs on your computer (http://www.gnu.org/software/emacs/)
� Available from module webpage
� First tutorial will help with installation

Mozart Installation (Windows/Unix)

Details for the Windows Installation
Install Emacs and Mozart on your PC (very easily).

Details for the Unix Installation
1. Get an account on sunfire.
2. Add to your PATH the following new path: /home/course/cs2104/mozart/bin.
You can do this in two ways either (a) or (b):
(a) modify your ".profile" or ".bashrc" file such that the file will contain the
following two commands:
 PATH=$PATH:/home/course/cs2104/mozart/bin

 export PATH

(b) just type the following command in the command line:
 export PATH=$PATH:/home/course/cs2104/mozart/bin

3. To run Mozart from sunfire, you may need X-Window to be installed on your
Windows machine. To install X-Window, please use the guide from the following web
page: https://www.comp.nus.edu.sg/cf/x/index.html

Running Mozart on sunfire
1. start x-win32 on your windows machine.
2. connect to sunfire using a ssh client
3. type "oz&" in the command line.

Key Bindings
C-. C-l Feed current line
C-. C-r Feed selected region
C-. C-b Feed whole buffer
C-. C-p Feed current paragraph
C-. c Toggle display of *Oz Compiler* buffer
C-. e Toggle display of *Oz Emulator* buffer
C-x ‘ (i.e. Control-x backquote) positions the transcript to make the first error message
 visible and moves the point, in the source buffer, to
 where the bug is likely to be located.
C-. n Create a new buffer using the Oz major mode. Note

 that this buffer has no associated file name, so
 quitting Emacs will kill it without warning.

M-n
M-p Switch to the previous resp. next buffer in the buffer
 list that runs in an Oz mode. If no such buffer exists,
 an error is signalled.

For more details about Mozart commands, you should consult Programming
Environment and Tools manual. For more details about emacs commands, you should
consult the Emacs on-line tutorial available from the Help menu in the Emacs menu bar
or an online tutorial from http://www.lib.uchicago.edu/keith/tcl-course/emacs-
tutorial.html.

Emacs Installation

� http://www.gnu.org/software/emacs/windows/

The Mozart System

� Interactive interface (the declare statement)
� Allows introducing program fragments incrementally and execute them
� Has a tool (Browser), which allows looking into the store using the

procedure Browse
� {Browse 21 * 101} -> by selecting “Oz” panel, “Feed Line” or alternatively

“C-. C-l”, this will display in the Browser window the number 2121

Running our first Oz program

The Mozart Interface

Concept of (Single-Assignment) Variable Identifier
declare
 X = 21

 X = 22
 % raise an error
 X = 21
 % do nothing
 declare
 X = 22
 % from now on, X will be bound to 22

Concept of Oz Variable Type
A variable type is known only after the variable is bound
Examples:
1. X < 1
 X < 1.0

2. declare X Y
 X = "Oz Language"
 Y = ’Oz Language’
 if X == Y
 then {Browse yes}
 else {Browse no}
 end

The Mozart Documentation

Concept of Oz Variable Type
declare X Y Z
X = "Oz Language"
Y = ’Oz Language’
{String.toAtom X Z}
if Z == Y then {Browse yes}
else {Browse no}
end

Try these Functions
declare
fun {Minus X}
 ~X
end
{Browse {Minus 15}}
declare
fun {Max X Y}
 if X>Y then X else Y end
end
declare

X = {Max 22 18}
Y = {Max X 43}
{Browse Y}

Exercise 1 (Absolute Value) Write a function Abs that computes the absolute value of a
number. This should work for both integers and real numbers.

Try Recursive Function
Recursive function definition
fun {Fact N}
 if N == 0 then 1
 else N * {Fact N-1}
 end
end
{Browse {Fact 5}}

Try some calls:

� {Fact 5}
� {Fact 100}

� {Fact 10000} Use the Oz Panel to get an idea how much memory is needed.

Oz Panel

Try Fibonacci Example
The execution time of a program as a function of input size, up to a constant factor, is
called the program’s time complexity.

declare
fun {Fibo N}
 case N of
 1 then 1
 [] 2 then 1

 [] M then {Fibo (M-1)} + {Fibo (M-2)}
 end
end
{Browse {Fibo 100}}

The time complexity of {Fibo N} is proportional to 2N.

Try Efficient Fibonacci Example
declare
fun {FiboTwo N A1 A2}
 case N of
 1 then A1
 [] 2 then A2
 [] M then {FiboTwo (M-1) A2 (A1+A2)}
 end
end
{Browse {FiboTwo 100 1 1}}

The time complexity of {Fibo N} is proportional to N.

Exercise 2 (Power) Compute nm where n is an integer and m is a natural number.
Hint: Use the following inductive definition of nm:

� n0 = 1
� nm = n * nm-1

Write a function Pow as follows:
declare
fun {Pow N M}
 if ... then
 ...
 else
 ...
 end
end

Exercise 3 (Maximum Recursively) Compute the maximum of two natural numbers,
knowing that the only allowed test with a conditional is the test whether a number is zero
(that is, if N==0 then … else … end).
Hint: Facts about the maximum (n ����DQG�P�������

� max(n, m)=m, if n=0.
� max(n, m)=n, if m=0.
� max(n, m)=1 + max(n-1, m-1), otherwise.

