
CS2104 Lambda Calculus
Lab/Assignment 2. (Deadline 8 Oct 2007 Mon 6pm)
Note : Submit in a single file, say lab3.oz. There is no need to provide any test cases in
your submission. You should of course design your own test suites to ensure that your
code is working correctly. These tests should be commented out prior to submission.
(Lab session on 21Sep & 5Oct 3-6pm PL2 COM1/B09)

One of the smallest universal programming language is known as the lambda calculus. It
was introduced in the 1930s by Alonzo Church as a way of formalizing the concept of
computability. Lambda calculus is universal in the sense that any computable function
can be expressed and evaluated using this formalism. It is thus equivalent in power to the
Turing machine.

The central concept in lambda calculus is the “expression” which can either be an
identifier (or variable), a function or an application, as captured by the following BNF
grammar:

<expr> ::= <id> | <function> | <application>
<function> ::= O <id> . <expression>
<application> ::= <expression> <expression>

An example of a function is (O x . x) which denotes the identity function. The identifier
after “O” is the parameter of the function, while the expression after the “.” is the body of
the function. Functions may be used in the left hand side of an application. An example is
(O x . x) y which could be evaluated by substituting the argument of the function
application for its parameter in the function body. In the above example, we get:

(O x . x) y = [y/x]x = y

Parenthesis may be added to disambiguate this notation. For example (O x . x x) (O x . x)
denotes a function that is applied with an identify function as argument. It can be reduced
as follows:

(O x . x x) (O x . x) = [(O x . x)/x] x x = (O x . x)(O x . x)
= [(O x . x)/x] x = (O x . x)

For ease of implementation, we can capture the terms of lambda calculus with the help of
abstract syntax tree in Oz. In particular, let us assume that our lambda terms can be built
using the following data type:

<Expr> ::= <Id> | lam(<Id> <Expr>) | apply(<Expr> <Expr>)
| let(<Id>#<Expr> <Expr>)

Note that <Id> denotes an identifier that shall be specified as an atom. We also provide a
let construct as a syntactic sugar to bind an identifier to its first expression whilst
returning its second expression as result. In this lab assignment, we will attempt to write a
library of functions that can be used to manipulate lambda terms. This library of
functions will later be used to build an interpreter for lambda calculus in Lab4. For the
moment, we focus on building a library of useful functions.

Free variables

Each variable that is captured in either lam or let construct is said to be a “bound”
identifier, while those that are not captured are known as “free” variables. For example,
given lam(x apply(y x)), the variable y is free while variable x is bound. Similarly,
in the term apply(x let(x#y x)), the first occurrence of x and y are said to be free,
while the last occurrence of x is bound. Write a function, called FreeSet which would
return all free variables in an expression. Some examples are:

{FreeSet apply(x let(x#y x))} % returns [x y]
{FreeSet apply(y apply(let(x#x x) y))} % returns [y] or [y y]

Environment/Mapping

During the evaluation of a lambda term, we often build an environment for the identifiers
that map each given variable to its corresponding argument. We can capture this mapping
as a list of pairs of the form <Env>=<List>(<Id>#<Expr>). To support this
environment data structure, we may provide the following functions:

IsMember :: {<Env> <Id>} � <Boolean>
Fetch :: {<Env> <Id>} � <Expr>
Adjoin :: {<Env> <Id>#<Expr>} � <Expr>

The IsMember function checks if a given identifier is present in the current environment,
while Fetch will return the expression of the present identifier from the environment. If
the identifier is not present, the original identifier is returned unchanged. Finally, the
Adjoin function will add a new pair into the environment that overrides a previous
mapping of the identifier, if it exists. Some examples are given below:

{IsMember [a#E1 b#y c#E3] c} % returns true
{IsMember [a#E1 b#y c#E3] y} % returns false
{Fetch [a#E1 b#y c#E3] c} % returns E3
{Fetch [a#E1 b#y c#E3] d} % returns d
{Adjoin [a#E1 b#y c#E3] c#E4} % [c#E4 a#E1 b#y]
{Adjoin [a#E1 b#y c#E3] d#E4} % [d#E4 a#E1 b#y c#E3]

Renaming

The bound variables of lam/let constructs do not carry any meaning by themselves and
are essentially place holders to indicate binding of argument to corresponding identifiers.
We can thus rename the bound identifiers without changing the meaning of a lambda
term. For example, we have the following equivalences:

lam(z z) � lam(y y) � lam(a a)
let(id#lam(z z) apply(id y)) � let(a#lam(b b) apply(a y))

To carry out the renaming of bound identifiers, we must have the ability to generate
unique identifiers. Let us use a function NewId that would generate a unique identifier of
the form id<n>, as defined below:

Cnt={NewCell 0}
fun {NewId}

Cnt:=@Cnt+1
{String.toAtom {Append "id<" {Append {Int.toString @Cnt} ">"}}}

end
This function uses a Cell object to obtain a running number that is incremented with each
invocation to NewId. Each {NewId} call would give unique identifier with each
invocation. We expect NewId function to work as follows:

{NewId} % returns id<1>
{NewId} % returns id<2>
{NewId} % returns id<3>

With the help of NewId, you are to define a function Rename that would return a new
lambda term where the bound variables are uniquely renamed, as highlighted below.

{Rename lam(z lam(x z))}
% returns lam(id<1> lam(id<2> id<1>))

{Rename let(id#lam(z z) apply(id y))}
% returns let(id<3>#lam(id<4> id<4>) apply(id<3> y))

Substitution

Lambda terms are essentially evaluated with the help of substitution. We can implement
such substitution with the following function:

Subs :: {<Id>#<Expr> <Expr>} � <Expr>
Using this function, we may reduce each application by substituting the argument for its
parameter in the function’s body. For example, the lambda term

apply(lam(x apply(x y)) lam(x x))
can be reduced by the following substitution process.

= {Subs x#lam(x x) apply(x y) }

= apply(lam(x x) y)

When applying substitution, we should always substitute only the free occurrences of its
identifier in the main expression. We must ensure that the bound identifiers of the same
name are not substituted. For example, the third occurrence of x below is not substituted
as it is bound to an inner lambda term:

{Subs x#lam(z z) apply(x lam(x apply(x z))) }
= apply(lam(z z) lam(x apply(x z)))

Another subtlety with substitution is that the free variables of the argument to substitute
into a given expression must not clash with the bound variables of the latter. For example,
the substitution below has such a clash as the free variable z of the argument lam(y z)

clashes with the bound identifier of lam(z apply(x z)).
{Subs x#lam(y z) apply(x lam(z apply(x z))) }

If we apply the substitution in a naïve way, we will get the following result:
apply((lam y z) lam(z apply((lam y z) z)))

where the third occurrence of z is now bound when it should have been free.

One solution to this problem is to rename each lambda term whose bound variable
clashes with the free variables of the argument being substituted. In the above example,
we should rename the lambda term as follows:

{Rename lam(z apply(x z))}
= lam(id<1> apply(x id<1>))

After this renaming, we can apply substitution in a safe manner, as follows:
{Subs x#lam(y z) apply(x lam(id<1> apply(x id<1>)))}
= apply(lam(y z) lam(id<1> apply((lam y z) id<1>)))

Implement a Subs function which adheres to the above stated conditions.

NB You may also read tutorial introductions on lambda calculus that can be found at the
following web sites:

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
http://www.soe.ucsc.edu/classes/cmps112/Spring03/readings/lambdacalculus/project3.html
http://ling.ucsd.edu/~barker/Lambda/

