
17 Aug 2007 CS2104, Lecture 1 1

Programming Language Concepts,
CS2104
Lecture 1

Dr Chin Wei Ngan
chinwn@comp.nus .edu.sg
Office : S15 6-01 (old site)

17 Aug 2007 CS2104, Lecture 1 2

Programming Language Concepts

� CS2104 is a 4 credit points module
� Written final exam 50%
� Midterm exam 25%
� Lab/tutorial assignments 25%

� Module homepage
http://www.comp.nus.edu.sg/~cs2104
IVLE

� Teaching
� Lectures: Friday, 12:00-14:00, COM1/206
� Exam: 27 Nov 2007, morning (Tue)

17 Aug 2007 CS2104, Lecture 1 3

The Team
� Lectures

� Dr. Chin Wei-Ngan (Consultation : Wed 9-11am but
other times OK too but email me first.)

� Lectures based of the book:
� Peter Van Roy, Seif Haridi: Concepts, Techniques,

and Models of Computer Programming, The MIT
Press, 2004

� Slides from CS2104, 2003-2006
� Recommended books:

� Allen Tucker, Robert Noonan: Programming
Languages. Principles and Paradigms, McGraw Hill,
2002

17 Aug 2007 CS2104, Lecture 1 4

Lab Assignment Submissions

� Student submission through IVLE
� Please use CS2104, Workbin

17 Aug 2007 CS2104, Lecture 1 5

Lecture Structure

� Reminder of last lecture
� Overview
� Content (new notions + examples)
� Summary
� Reading suggestions

17 Aug 2007 CS2104, Lecture 1 6

Tutorials/ Labs
� Purposes

� for self-assessment
� use material from lectures
� answer questions
� help deeper understanding
� prepare lab assignments
� compulsory tutorial attendance + credits (up to 10%)

� Supervised lab session
� First lab/assignment: to be announced
� done by students (with help from teaching assistant)

� You can discuss tutorials/chapters on the IVLE
discussion groups

17 Aug 2007 CS2104, Lecture 1 7

Assignments

� There will be 4 or 5 lab assignments
� Deadline is strict! Don’t leave till last-minute.
� Mostly individual programming projects
� Code of conduct

� no copying (grade penalty for those caught)
� plagiarism is cheating and can lead to expulsion!

17 Aug 2007 CS2104, Lecture 1 8

Useful Software

� http://www.mozart-oz.org/
� programming language: Oz
� system: Mozart (1.3.0, released on April 15, 2004)
� interactive system

� Requires emacs on your computer
� Available from module webpage:

http://www.comp.nus.edu.sg/~cs2104/Materials/index.
html

� Install yourself
� First lab/assignment will help on installation

17 Aug 2007 CS2104, Lecture 1 9

Aim
� Knowledge and skills in

� Programming languages concepts
� Corresponding programming techniques

� Acquaintance with
� Key programming concepts/techniques in

computer science
� Focus on concepts and not on a particular

language

17 Aug 2007 CS2104, Lecture 1 10

Overview

� Introduction of main concepts:
� Computation model
� Programming model
� Reasoning model

17 Aug 2007 CS2104, Lecture 1 11

Programming
� Computation model

� formal system that defines a language and how
sentences (expressions, statements) are executed
by an abstract machine

� Programming model
� a set of programming techniques and design

principles used to write programs in the language of
the computation model

� Reasoning model
� a set of reasoning techniques to let you reason

about programs, to increase confidence that they
behave correctly, and to estimate their efficiency

17 Aug 2007 CS2104, Lecture 1 12

Computation Models

� Declarative programming (stateless programming)
� functions over partial data structures

� Concurrent programming
� can interact with the environment
� can do independent execution of program parts

� Imperative programming (stateful programming)
� uses states (a state is a sequence of values in time that

contains the intermediate results of a desired computation)

� Object-oriented programming
� uses object data abstraction, explicit state, polymorphism,

and inheritance

17 Aug 2007 CS2104, Lecture 1 13

Programming Models
� Exception handling

� Error management

� Concurrency
� Dataflow, lazy execution, message passing, active objects,

monitors, and transactions

� Components
� Programming in the large, software reuse

� Capabilities
� Encapsulation, security, distribution, fault tolerance

� State
� Objects, classes

17 Aug 2007 CS2104, Lecture 1 14

Reasoning Models
� Syntax

� Extended Backus-Naur Form (EBNF)
� Context-free and context-sensitive grammars

� Semantics
� Operational: shows how a statement executes as an abstract

machine
� Axiomatic: defines a statement as a relation between input state

and output state
� Denotational: defines a statement as a function over an abstract

domain
� Logical: defines a statement as a model of a logical theory

� Programming language
� Implements a programming model
� Describes programs composed of statements which compute

with values and effects

17 Aug 2007 CS2104, Lecture 1 15

Examples of Programming Languages

� CS1102: Java
� programming with explicit state
� object-oriented programming
� concurrent programming (threads, monitors)

� CS2104: Oz (multi-paradigm)
� declarative programming
� concurrent programming
� programming with explicit state
� object-oriented programming

17 Aug 2007 CS2104, Lecture 1 16

Oz

� The focus is on the programming model,
techniques and concepts, but not the particular
language!

� Approach
� informal introduction to important concepts
� introducing the underlying kernel language
� formal semantics based on abstract machine
� in depth study of programming techniques

17 Aug 2007 CS2104, Lecture 1 17

Declarative Programming Model
Philosophy

� Ideal of declarative programming
� say what you want to compute
� let computer find how to compute it

� More pragmatically
� let the computer provide more support
� free the programmer from some burden

17 Aug 2007 CS2104, Lecture 1 18

Properties of Declarative Models

� Focus on functions which compute when given
data structures as inputs

� Widely used
� functional languages: LISP, Scheme, ML, Haskell, …
� logic languages: Prolog, Mercury, …
� representation languages: XML, XSL, …

� Stateless programming
� no update of data structures
� Simple data transformer

17 Aug 2007 CS2104, Lecture 1 19

The Mozart System
� Built by Mozart Consortium (Universität des

Saarlandes, Swedish Institute of Computer Science,
Université catholique de Louvain)

� Interactive interface (the declare statement)
� Allows introducing program fragments incrementally and

execute them
� Has a tool (Browser), which allows looking into the store

using the procedure Browse
� {Browse 21 * 10} -> display 210

� Standalone application
� It consists of a main function, evaluated when the program

starts
� Oz source files can be compiled and linked

17 Aug 2007 CS2104, Lecture 1 20

Concept of Single-Assignment Store

� It is a set of variables that are initially
unbound and that can be bound to one value

� A value is a mathematical constant that does
not change.
For e.g : 2, ~4, true, ’a’, [1 2 3]

� Examples:
� {x1, x2, x3} has three unbound variables
� {x1=2, x2=true, x3} has only one unbound variable

17 Aug 2007 CS2104, Lecture 1 21

Concept of Single-Assignment Store
� A store where all variables are bound to values

is called a value store:
{x1=2, x2=true, x3=[1 2 3]}

� Once bound, a variable stays bound to that
value

� So, a value store is a persistent mapping from
variables to values

� A store entity is a store variable and its value
(which can be unbound).

17 Aug 2007 CS2104, Lecture 1 22

Concept of Single-Assignment Store

� Single-assignment
store is set of (store)
variables

� Initially variables are
unbound

� Example: store with
three variables, x1, x2,
and x3

unbound

Store

x1

unboundx2

unboundx3

17 Aug 2007 CS2104, Lecture 1 23

Concept of Single-Assignment Store

� Variables in store may
be bound to values

� Example: assume we
allow values of type
integers and lists of
integers

unbound

Store

x1

unboundx2

unboundx3

17 Aug 2007 CS2104, Lecture 1 24

Concept of Single-Assignment Store

� Examples:
� x1 is bound to integer

314
� x2 is bound to list [1 2 3]
� x3 is still unbound

Store

x1

x2

unboundx3

314

1 | 2 | 3 | nil

17 Aug 2007 CS2104, Lecture 1 25

Concept of Declarative Variable

� It is a variable in the
single-assignment
store

� Created as being
unbound

� Can be bound to
exactly one value

� Once bound, stays
bound
� indistinguishable from

its value

Store

x1

x2

unboundx3

314

1 | 2 | 3 | nil

17 Aug 2007 CS2104, Lecture 1 26

Concept of Value Store

� Store where all variables are
bound to values is called a
value store

� Examples:
� x1 bound to integer 314
� x2 bound to list [1 2 3]
� x3 bound to record
person(name: george

age: 25)

� Functional programming
computes functions on values

314

1 | 2 | 3 | nil

person

george 25

name age

Store

x1

x2

x3

17 Aug 2007 CS2104, Lecture 1 27

Concept of Single-Assignment Operation

x = value

� It is also called “value
creation”

� Assumes that x is unbound
� Examples:

� x1 = 314
� x2 = [1 2 3]

unbound

Store

x1

unboundx2

unboundx3

17 Aug 2007 CS2104, Lecture 1 28

Concept of Single-Assignment Operation

x = value
� x1 = 314
� x2 = [1 2 3]

314

Store

x1

unboundx2

unboundx3

17 Aug 2007 CS2104, Lecture 1 29

Concept of Single-Assignment Operation

x = value
� Single assignment operation (‘=‘)

� constructs value in store
� binds variable x to this value

� If the variable is already bound,
operation tests compatibility of
values
� if the value being bound is

different from that already
bound, an error is raised

314

Store

x1

x2

unboundx3

1 | 2 | 3 | nil

17 Aug 2007 CS2104, Lecture 1 30

Concept of Variable Identifier

� Variable identifiers start with capital letter: X, Y2
� The environment is a mapping from variable

identifiers to store entities
� declare X = <value>

� creates a new store variable x and binds it to <value>
� maps variable identifier X in environment to store

variable x, e.g. {X x}
� declare
X = Y
Y = 2

� The environment: E={X x, Y y}
� The single-assignment store: ={x=y, y=2}

17 Aug 2007 CS2104, Lecture 1 31

Concept of Variable Identifier

� Refer to store entities
� Environment maps

variable identifiers to
store variables
� declare X

� local X in … end

� X is variable identifier
� Corresponds to

’environment’ {X o x1}

Store

”X” Unboundx1

Environment

17 Aug 2007 CS2104, Lecture 1 32

Concept of Variable Identifier

� declare

X = 21

X = 22

% raise an error
X = 21

% do nothing
declare

X = 22

% from now on, X will be bound to 22

17 Aug 2007 CS2104, Lecture 1 33

Partial Value
� A partial value is a data structure that may contain

unbound variables. For example, x2 is unbound.
Hence, x1 is a partial value.

Store

”X” personx1

“George” Unboundx2

name age

”Y”

17 Aug 2007 CS2104, Lecture 1 34

Variable-Variable Binding

Store

”X” x1

Unboundx2”Y”

Unbound

After X=Y

� Variables can be bound to variables. They form an
equivalence set of store variables after such binding.

� They throw exception if their values are different.

17 Aug 2007 CS2104, Lecture 1 35

Variable-Variable Binding

Store

”X” x1

x2”Y”

After X=5

5

� After binding one of the variables.

17 Aug 2007 CS2104, Lecture 1 36

Concept of Dataflow Variables
� Variable creation and binding can be separated.

What happens if we use a variable before it is
bound? Scenario is known as variable use error.

� Possible solutions:
1. Create and bind variables in one step (use error cannot

occur): functional programming languages
2. Execution continues and no error message is given

(variable’s content is “garbage”): C/C++
3. Execution continues and no error message is given

(variable’s content is initialized with a default value): Java

17 Aug 2007 CS2104, Lecture 1 37

Concept of Dataflow Variables

� …..
4. Execution stops with error message (or an

exception is raised): Prolog
5. Execution is not possible; the compiler detects

that there is an execution path to the variable’s
use that does not initialize it: Java – local
variables

6. Execution waits until the variable is bound and
then continues (dataflow programming): Oz

17 Aug 2007 CS2104, Lecture 1 38

Example of Dataflow Variables

declare X Y

Y = X + 1

{Browse Y}

Running this Oz code, the Oz Browser does not display anything

Running the previous line, the Oz Browser displays 3

X = 2

17 Aug 2007 CS2104, Lecture 1 39

Dynamic Typing in Oz
� A variable type is known only after the variable is

bound
� For an unbound variable, its type checking is left for

run time.
� An operation with values of wrong type will raise

exceptions
� This setting is dynamically typed.
� In contrast, Java is a static type language, as the types

of all variables can be determined at compile time
� Examples: Types of X maybe Int, Float, ..

� X < 1
� X < 1.0

17 Aug 2007 CS2104, Lecture 1 40

Concept of Cell
� A cell is a multiple-assignment variable
� A memory cell is also called explicit state
� Three functions operate on cells:

� NewCell creates a new cell
� := (assignment) puts a new value in a cell
� @ (access) gets the current value stored in the cell

� declare

C = {NewCell 0}

{Browse @C}

C := @C + 1

{Browse @C}

17 Aug 2007 CS2104, Lecture 1 41

Concept of Function

� Function definition
fun {<Identifier> <Arguments>}

[<Declaration Part> in]
[<Statement>]
<Expression>

end

� The value of the last expression in the body is the
returned value of the function

� Function application (call)
X = {<Identifier> <Arguments>}

17 Aug 2007 CS2104, Lecture 1 42

Concept of Function. Examples
declare
fun {Minus X}

~X
end
{Browse {Minus 15}}
declare
fun {Max X Y}

if X>Y then X else Y end
end
declare
X = {Max 22 18}
Y = {Max X 43}
{Browse Y}

17 Aug 2007 CS2104, Lecture 1 43

Recursive Functions
� Direct recursion: the function is calling itself
� Indirect (or mutual) recursion: e.g. F is calling
G, and G is calling F

� General structure
� base case
� recursive case

� Typically, for a natural number n
� base case: n is zero
� recursive case:

� n is different from zero
� n is greater than zero

17 Aug 2007 CS2104, Lecture 1 44

Inductive Function Definition

� Factorial function: n! = 1* 2 * 3 * … * n

� inductively defined as
0! = 1
n! = n * ((n-1)!)

� program as function Fact

17 Aug 2007 CS2104, Lecture 1 45

Inductive Function Definition

� Factorial function definition in Oz

fun {Fact N}

if N == 0 then 1

else N * {Fact N-1}

end

end

{Browse {Fact 5}}

17 Aug 2007 CS2104, Lecture 1 46

Correctness
� The most popular reasoning techniques is

mathematical induction:
� Show that for the simplest (initial) case the program is correct
� Show that, if the program is correct for a given case, then it is

correct for the next case

� {Fact 0} returns the correct answer, namely 1
� Assume {Fact N-1} is correct. Suppose N>0, then
Fact N returns N*{Fact N-1}, which is correct
according to the Oz inductive hypothesis!

� Fact N for negative N goes into an infinite number of
recursive calls, so it is wrong!

17 Aug 2007 CS2104, Lecture 1 47

Complexity
� The execution time of a program as a function of input

size, up to a constant factor, is called the program’s
time complexity.

declare
fun {Fibo N}

case N of
1 then 1

[] 2 then 1
[] M then {Fibo (M-1)} + {Fibo (M-2)}
end

end
{Browse {Fibo 100}}

� The time complexity of {Fibo N} is proportional to 2N.

17 Aug 2007 CS2104, Lecture 1 48

Complexity
declare

fun {FiboTwo N A1 A2}

case N of

1 then A1

[] 2 then A2

[] M then {FiboTwo (M-1) A2 (A1+A2)}

end

end

{Browse {FiboTwo 100 1 1}}

� The time complexity of {FiboTwo N} is proportional
to N.

17 Aug 2007 CS2104, Lecture 1 49

Concept of Lazy Evaluation
� Eager (supply-driven, or data-driven) evaluation: calculations

are done as soon as they are called
� Lazy (demand-driven) evaluation: a calculation is done only

when the result is needed
declare

fun lazy {F1 X} X*X end

fun lazy {Ints N} N|{Ints N+1} end

A = {F1 5}

{Browse A}

% it will display: A
Note that {F1 5} does not execute until it is demanded!

17 Aug 2007 CS2104, Lecture 1 50

Concept of Lazy Evaluation
� F1 and Ints created “stopped executions” that continue

when their results are needed.
� After demanding value of A (function * is not lazy!), we get:

B = {Ints 3}
C = 2 * A // A={F1 5}
{Browse A}

% it will display: 25
{Browse B}

% it will display: B
case B of X|Y|Z|_ then {Browse X+Y+Z} end

% it will cause only first three elements of B to be
evaluated and then display: 12

% previous B is also refined to: 3|4|5|_

17 Aug 2007 CS2104, Lecture 1 51

Concept of Higher-Order Programming

� Ability to pass functions as arguments or results
� We want to write a function for 1+2+…+n (GaussSum)

� It is similar to Fact, except that:
� “*” is “+”

� the initial case value is not “0” but “1”

� The two operators are written as functions; they will
be arguments for the generic function
fun {Add X Y} X+Y end

fun {Mul X Y} X*Y end

17 Aug 2007 CS2104, Lecture 1 52

Concept of Higher-Order Programming
� The generic function is:
fun {GenericFact Op InitVal N}

if N == 0 then InitVal

else {Op N {GenericFact Op

InitVal (N-1)}}

end

end

17 Aug 2007 CS2104, Lecture 1 53

Concept of Higher-Order Programming
� The instances of this generic function may be:
fun {FactUsingGeneric N}

{GenericFact Mul 1 N}

end

fun {GaussSumUsingGeneric N}

{GenericFact Add 0 N}

end

� They can be called as:
{Browse {FactUsingGeneric 5}}

{Browse {GaussSumUsingGeneric 5}}

17 Aug 2007 CS2104, Lecture 1 54

Concept of Concurrency
� Is the ability of a program to run independent

activities (not necessarily to communicate)
� A thread is an executing program
� Concurrency is introduced by creating threads
thread P1 in

P1 = {FactUsingGeneric 5}

{Browse P1}

end

thread P2 in

P2 = {GaussSumUsingGeneric 5}

{Browse P2}

end

17 Aug 2007 CS2104, Lecture 1 55

Concept of Dataflow
� Is the ability of an operation to wait until all its variables

become bounded
declare X in
thread {Delay 5000} X = 10 end
thread {Browse X * X} end
thread {Browse ’start’} end

� The second Browse waits for X to become bound
� X = 10 and X * X can be done in any order, so dataflow

execution will always give the same result
declare X in
thread {Delay 5000} {Browse X * X} end
thread X = 10 end
thread {Browse ’start’} end

� Dataflow concurrency (Chapter 4)

17 Aug 2007 CS2104, Lecture 1 56

Concept of Object
� It is a function with internal memory (cell)
declare
local C in

C = {NewCell 0}
fun {Incr}

C := @C + 1
@C

end
fun {Read} @C end

end
� C is a counter object, Incr and Read are its interface
� The declare statement makes the variables Incr and Read

globally available. Incr and Read are bounded to functions

17 Aug 2007 CS2104, Lecture 1 57

Concept of Object-Oriented Programming
� Encapsulation

� Variable C is visible only between local and last end

� User can modify C only through Incr function (the counter
will work correctly)

� User can call only the functions (methods) from the interface
{Browse {Incr}}

{Browse {Read}}

� Data abstraction (Section 6.4)
� Separation between interface and implementation
� User program does not need to know the implementation

� Inheritance (Chapter 7)

17 Aug 2007 CS2104, Lecture 1 58

Concept of Class
� It is a “factory” which creates objects
declare
fun {ClassCounter} C Incr Read in

C = {NewCell 0}
fun {Incr}

C := @C + 1
@C

end
fun {Read}

@C
end
counter(incr:Incr read:Read)

end

17 Aug 2007 CS2104, Lecture 1 59

Concept of Class

� ClassCounter is a function that creates a new
cell and returns new functions: Incr and Read
(recall higher-order programming)

� The record result groups the methods so that they
can be accessed by its fields.

declare

Counter1 = {ClassCounter}

Counter2 = {ClassCounter}

� The methods can be accessed by “.” (dot) operator
{Browse {Counter1.incr}}

{Browse {Counter2.read}}

17 Aug 2007 CS2104, Lecture 1 60

Concept of Nondeterminism
� It is concurrency + state
� The order in which threads access the state can

change from one execution to the next
� The time when operations are executed is not

known
� Interleaving (mixed order of threads statements) is

dangerous (one of most famous concurrent
programming error :
� [N.Leveson, C.Turner: An investigation of the Therac-25

accidents. IEEE Computer, 26(7):18-41, 1993])
� Solution: An operation is atomic if no intermediate

states can be observed (Chapter 8)

17 Aug 2007 CS2104, Lecture 1 61

Summary

� Oz, Mozart
� Variable, Type, Cell
� Function, Recursion, Induction
� Correctness, Complexity
� Lazy Evaluation
� Higher-Order Programming
� Concurrency, Dataflow
� Object, Classes
� Nondeterminism

17 Aug 2007 CS2104, Lecture 1 62

Reading suggestions

� From [van Roy,Haridi; 2004]
� Chapter 1
� Appendix A
� Exercises 1.18.1-1.18.10

� From [Tucker, Noonan; 2002]
� Chapter 1
� Exercises 1.1-1.7 from [Tucker, Noonan; 2002]

� First lab/assignment: Fri 24 Aug 2007
(15:00-18:00 Venue : ?) Compulsory
attendance. Choose a 1-hr session.

