Programming Language Concepts,
CS2104
Lecture 1

Dr Chin Wei Ngan
chinwn@comp.nus .edu.sg
Office : S15 6-01 (old site)

17 Aug 2007 CS2104, Lecture 1 1

Programming Language Concepts

CS2104 is a 4 credit points module

o Written final exam 50%

o Midterm exam 25%

o Lab/tutorial assignments 25%

Module homepage
http://www.comp.nus.edu.sg/~cs2104
IVLE

Teaching

o Lectures: Friday, 12:00-14:00, COM1/206
o Exam: 27 Nov 2007, morning (Tue)

17 Aug 2007 CS2104, Lecture 1

The Team

Lectures

o Dr. Chin Wei-Ngan (Consultation : Wed 9-11am but
other times OK too but email me first.)

Lectures based of the book:

o Peter Van Roy, Seif Haridi: Concepts, Technigues,
and Models of Computer Programming, The MIT
Press, 2004

o Slides from CS2104, 2003-2006

Recommended books:

o Allen Tucker, Robert Noonan: Programming
Lanquages. Principles and Paradigms, McGraw Hill,
2002

17 Aug 2007 CS2104, Lecture 1 3

Lab Assignment Submissions

= Student submission through IVLE
= Please use CS2104, Workbin

2 Workbin - Microsoft Internet Explorer, |;||E|[’5__<|

(ce2104 FEEDBACE | HELP | CLOSE
' Workbin : Programming Language Concepts

"> Lecture Notes {0)] Assignment (23 AF Student Submission {0)

Lecture Motes has 0O files,

Edit|Del| DL File Name and Description Owner 5ize Date‘
Mo files in this folder

17 Aug 2007 CS2104, Lecture 1

I ecture Structure

Reminder of last lecture

Overview
Content (new notions + examples)

Summary
Reading suggestions

17 Aug 2007 CS2104, Lecture 1

Tutorials/ Labs

Purposes

for self-assessment

use material from lectures

answer questions

help deeper understanding

prepare lab assignments

compulsory tutorial attendance + credits (up to 10%)

Supervised lab session
o First lab/assignment: to be announced
o done by students (with help from teaching assistant)

You can discuss tutorials/chapters on the |VLE
discussion groups

o 0o o 0 0O O

17 Aug 2007 CS2104, Lecture 1

Assignments

There will be 4 or 5 lab assignments
Deadline is strict! Don't leave till last-minute.
Mostly individual programming projects

Code of conduct

0 no copying (grade penalty for those caught)
o plagiarism is cheating and can lead to expulsion!

17 Aug 2007 CS2104, Lecture 1

‘ Useful Software

= http://www.mozart-0z.org/
o programming language: Oz
o system: Mozart (1.3.0, released on April 15, 2004)
0 Interactive system

= Requires emacs on your computer

= Available from module webpage:
nttp://www.comp.nus.edu.sg/~cs2104/Materials/index.
ntml

= Install yourselt
= First lab/assignment will help on installation

17 Aug 2007 CS2104, Lecture 1 8

Aim
Knowledge and skKills in

o Programming languages concepts
o Corresponding programming techniques

Acquaintance with

o Key programming concepts/techniques in
computer science

o Focus on concepts and not on a particular
language

17 Aug 2007 CS2104, Lecture 1

Overview

Introduction of main concepts:

0o Computation model
o Programming model
o Reasoning model

17 Aug 2007 CS2104, Lecture 1

10

Programming

Computation model

o formal system that defines a language and how
sentences (expressions, statements) are executed
by an abstract machine

Programming model

0 a set of programming technigues and design
principles used to write programs in the language of
the computation model

Reasoning model

0 a set of reasoning techniques to let you reason
about programs, to increase confidence that they
behave correctly, and to estimate their efficiency

17 Aug 2007 CS2104, Lecture 1 11

Computation Models

Declarative programming (stateless programming)
o functions over partial data structures

Concurrent programming
o can interact with the environment
o can do independent execution of program parts

Imperative programming (stateful programming)

0 uses states (a state is a sequence of values in time that
contains the intermediate results of a desired computation)

Object-oriented programming

0 uses object data abstraction, explicit state, polymorphism,
and inheritance

17 Aug 2007 CS2104, Lecture 1 12

Programming Models

Exception handling
o Error management

Concurrency

o Dataflow, lazy execution, message passing, active objects,
monitors, and transactions

Components
o Programming in the large, software reuse

Capabilities
o Encapsulation, security, distribution, fault tolerance

State
o QObjects, classes

17 Aug 2007 CS2104, Lecture 1 13

Reasoning Models

Syntax
o Extended Backus-Naur Form (EBNF)
o Context-free and context-sensitive grammars

Semantics

o Operational: shows how a statement executes as an abstract
machine

o Axiomatic: defines a statement as a relation between input state
and output state

o Denotational: defines a statement as a function over an abstract
domain

o Logical: defines a statement as a model of a logical theory
Programming language
o Implements a programming model

o Describes programs composed of statements which compute
with values and effects

17 Aug 2007 CS2104, Lecture 1 14

Examples of Programming Languages

CS1102: Java

0 programming with explicit state

0 object-oriented programming

o concurrent programming (threads, monitors)

CS2104: Oz (multi-paradigm)
0 declarative programming

0 concurrent programming

o programming with explicit state
0 object-oriented programming

17 Aug 2007 CS2104, Lecture 1

15

Oz

The focus is on the programming model,
techniques and concepts, but not the particular
language!

Approach

o Informal introduction to important concepts

0 Introducing the underlying kernel language

o formal semantics based on abstract machine

o In depth study of programming techniques

17 Aug 2007 CS2104, Lecture 1

16

Declarative Programming Model
Philosophy

ldeal of declarative programming
o say what you want to compute
o let computer find how to compute it

More pragmatically
o let the computer provide more support
o free the programmer from some burden

17 Aug 2007 CS2104, Lecture 1

17

Properties of Declarative Models

Focus on functions which compute when given
data structures as inputs

Widely used
o functional languages: LISP, Scheme, ML, Haskell, ...
0 logic languages: Prolog, Mercury, ...

0 representation languages: XML, XSL, ...

Stateless programming
0 no update of data structures
0 Simple data transformer

17 Aug 2007 CS2104, Lecture 1 18

The Mozart System

Built by Mozart Consortium (Universitat des
Saarlandes, Swedish Institute of Computer Science,
Université catholigue de Louvain)

Interactive interface (the dec1are statement)

o Allows introducing program fragments incrementally and
execute them

o Has a tool (Browser), which allows looking into the store
using the procedure Browse

{Browse 21 * 10} ->display 210

Standalone application

o It consists of a main function, evaluated when the program
starts

o Oz source files can be compiled and linked

17 Aug 2007 CS2104, Lecture 1 19

Concept of Single-Assignment Store

It is a set of variables that are initially
unbound and that can be bound to one value

A value is a mathematical constant that does
not change.

Fore.g:2, ~4,true,’a’, [1 2 3]
Examples:

0 {X4, X,, X5} has three unbound variables
0 {X,=2, X,=t rue, X5} has only one unbound variable

17 Aug 2007 CS2104, Lecture 1 20

Concept of Single-Assignment Store

A store where all variables are bound to values
IS called a value store:
{Xi=2, X,=true, Xg=[1 2 31}

Once bound, a variable stays bound to that
value

So, a value store is a persistent mapping from
variables to values

A store entity is a store variable and its value
(which can be unbound).

17 Aug 2007 CS2104, Lecture 1 21

Concept of Single-Assignment Store

Store

Single-assignment
store Is set of (store) X, | unbound
variables

Initially variables are X, | unbound
unbound

Example: store with X, | unbound
three variables, x,, x,,
and x;

17 Aug 2007 CS2104, Lecture 1

Concept of Single-Assignment Store

Store

Variables in store may

be bound to values X | unbound
Example: assume we
allow values of type X, | unbound

iIntegers and lists of
integers X; | unbound

17 Aug 2007 CS2104, Lecture 1

Concept of Single-Assignment Store

Examples: Store
o X, is bound to integer x, | 314
314

0 X, is bound to list [1 2 3]

o X, 1] 2| 3] nil
0 Xz is still unbound

X3 | unbound

17 Aug 2007 CS2104, Lecture 1

Concept of Declarative Variable

Store

It is a variable in the
single-assignment X, | 314
store
Created as being x, 1] 2| 3| i
unbound

Can be boundto
exactly one value X, | unbound

Once bound, stays
bound

o indistinguishable from
its value

17 Aug 2007 CS2104, Lecture 1

Concept of Value Store

Store where all variables are
bound to values is called a
value store

Examples:
o X; bound to integer 314
o X, boundtolist [1 2 3]

0 X3 bound to record
person (name: george
age: 25)

Functional programming
computes functions on values

Store
Xy | 314
X, | 1] 2| 3| nil
X3 | person
name age
george 25

17 Aug 2007 CS2104, Lecture 1

26

Concept of Single-Assignment Operation

X =value Store
, X; | unbound
It is also called “value
creation”
Assumes that x is unbound X, | unbound
Examples:
0 Xy = ols X3 | unbound

17 Aug 2007 CS2104, Lecture 1

Concept of Single-Assignment Operation

Store

X = value
"Xy = 314

X, | 314

X, | unbound

X3 | unbound

17 Aug 2007 CS2104, Lecture 1

Concept of Single-Assignment Operation

Single assignment operation (‘="

o constructs value in store
o binds variable x to this value

X, | 314

. . > 'I
If the variable is already bound, X | 11 | 3| ni

operation tests compatibility of
values
o if the value being bound is

different from that already
bound, an error is raised

X3 | unbound

17 Aug 2007 CS2104, Lecture 1

Concept of Variable Identifier

Variable identifiers start with capital letter: x, v2

The environment is a mapping from variable
iIdentifiers to store entities

declare X = <value>

o creates a new store variable x and binds it to <value>

0 maps variable identifier X in environment to store
variable x, e.g. {Xx—x}

declare
X =Y
Y = 2

The environment: E={x—Xx, y—J}
The single-assignment store: o={x=y, y=2}

17 Aug 2007 CS2104, Lecture 1 30

Concept of Variable Identitier

Refer to store entities

Environment

Store

Environment maps

variable identifiers to
store variables

aQdeclare X
Qlocal X in .. end

Xis variable identifier

Corresponds to
‘environment’ {Xx — X}

Unbound

17 Aug 2007 CS2104, Lecture 1

31

Concept of Variable Identitier

declare

X = 21

X = 22

% raise an error
X = 21

% do nothing

declare
X = 22
% from now on, X will be bound to 22

17 Aug 2007 CS2104, Lecture 1

32

Partial Value

A partial value is a data structure that may contain
unbound variables. For example, x, is unbound.
Hence, X, Is a partial value.

Store

”X” X1

name age

“George” X Unbound

”Y”

17 Aug 2007 CS2104, Lecture 1

Variable-Variable Binding

Variables can be bound to variables. They form an
equivalence set of store variables after such binding.

They throw exception if their values are different.

After x=Y

Store

@

o X, | Unbound

17 Aug 2007 CS2104, Lecture 1

Variable-Variable Binding

After binding one of the variables.

After Xx=5
Store
”X” X1 -
/ 5
—
Y X5

17 Aug 2007 CS2104, Lecture 1

35

Concept of Datatlow Variables

Variable creation and binding can be separated.
What happens if we use a variable before it is
bound? Scenario is known as variable use error.

Possible solutions:

1. Create and bind variables in one step (use error cannot
occur): functional programming languages

2. Execution continues and no error message is given
(variable’s content is “garbage”): C/C++

s. Execution continues and no error message is given
(variable’s content is initialized with a default value): Java

17 Aug 2007 CS2104, Lecture 1 36

Concept of Datatlow Variables

4. Execution stops with error message (or an
exception is raised): Prolog

5. Execution is not possible; the compiler detects
that there is an execution path to the variable’s
use that does not initialize it: Java — local
variables

6. Execution waits until the variable is bound and
then continues (dataflow programming): Oz

17 Aug 2007 CS2104, Lecture 1 37

Example of Datatlow Variables

declare X Y
Y = X + 1

{Browse Y}

Running this Oz code, the Oz Browser does not display anything

X = 2

Running the previous line, the Oz Browser displays 3

17 Aug 2007 CS2104, Lecture 1 38

Dynamic Typing in Oz

A variable type is known only after the variable is
bound

For an unbound variable, its type checking is left for
run time.

An operation with values of wrong type will raise
exceptions

This setting is dynamically typed.

In contrast, Java is a static type language, as the types
of all variables can be determined at compile time

Examples: Types of X maybe Int, Float,
g X < 1
0 X < 1.0

17 Aug 2007 CS2104, Lecture 1 39

Concept of Cell

A cell is a multiple-assignment variable
A memory cell is also called explicit state

Three functions operate on cells:

a0 NewCell creates a new cell

o := (assignment) puts a new value in a cell

o @ (access) gets the current value stored in the cell

declare

C = {NewCell 0}
{Browse (@C}

C := (@C + 1
{Browse @C}

17 Aug 2007 CS2104, Lecture 1

40

Concept of Function

Function definition
fun {<ldentifier> <Arguments>}
[<Declaration Part> in]
[<Statement>]
<Expression>
end
The value of the last expression in the body is the
returned value of the function
Function application (call)
X = {<ldentifier> <Arguments>}

17 Aug 2007 CS2104, Lecture 1 41

‘ Concept of Function. Examples

declare
fun {Minus X}
~X
end
{Browse {Minus 15}}
declare
fun {Max X Y}
1f X>Y then X else Y end
end
declare
X = {Max 22 18}
Y = {Max X 43}
{Browse Y}

17 Aug 2007 CS2104, Lecture 1

42

Recursive Functions

Direct recursion: the function is calling itself

Indirect (or mutual) recursion: e.g. = is calling
G, and g is calling =

General structure

o base case

a recursive case

Typically, for a natural number n»

0 base case: nlis zero

O recursive case:
n is different from zero
n is greater than zero

17 Aug 2007 CS2104, Lecture 1

43

Inductive Function Definition

Factorial function: n'=1*2*3* ... * n

0 Inductively defined as
0! =1
nl=n~*((n-1)!)

o program as function Fact

17 Aug 2007 CS2104, Lecture 1

Inductive Function Definition

Factorial function definition in Oz

fun {Fact N}

1f N == 0 then 1
else N * {Fact N-1}
end

end

{Browse {Fact 5}}

17 Aug 2007 CS2104, Lecture 1

45

Correctness

The most popular reasoning techniques is
mathematical induction:

o Show that for the simplest (initial) case the program is correct

o Show that, if the program is correct for a given case, then it is
correct for the next case

{Fact 0} returns the correct answer, namely 1

Assume {Fact N-1} is correct. Suppose N>0, then
Fact Nreturns N*{Fact N-1}, which is correct
according to the Oz inductive hypothesis!

Fact N for negative N goes into an infinite number of
recursive calls, so it is wrong!

17 Aug 2007 CS2104, Lecture 1 46

Complexity

The execution time of a program as a function of input
size, up to a constant factor, is called the program’s
time complexity.
declare
fun {Fibo N}
case N of
1 then 1
[] 2 then 1
[] M then {Fibo (M-1)} + {Fibo (M-2)}
end
end
{Browse {Fibo 100} }

The time complexity of {Fibo N} IS proportional to 2v.

17 Aug 2007 CS2104, Lecture 1 47

Complexity

declare
fun {FiboTwo N Al A2}
case N of
1 then Al
[] 2 then A2
[] M then {FiboTwo (M-1) A2 (Al+A2)}
end
end
{Browse {FiboTwo 100 1 1}}

The time complexity of {FiboTwo N} IS proportional
o N.

17 Aug 2007 CS2104, Lecture 1 48

Concept of Lazy Evaluation

Eager (supply-driven, or data-driven) evaluation: calculations
are done as soon as they are called

Lazy (demand-driven) evaluation: a calculation is done only
when the result is needed

declare
fun lazy {F1 X} X*X end
fun lazy {Ints N} N|{Ints N+1} end
A = {F1 5}
{Browse A}
% it will display: a
Note that {F1 5} does not execute until it is demanded!

17 Aug 2007 CS2104, Lecture 1 49

Concept of Lazy Evaluation

F1 and Ints created “stopped executions” that continue
when their results are needed.

After demanding value of A (function * is not lazy!), we get:
B = {Ints 3}
C =2 * A // A={F1 5}
{Browse A}
% 1t will display: 25
{Browse B}
% 1t will display: B
case B of X|Y|Z]|_then {Browse X+Y+7Z} end

% it will cause only first three elements of & to be
evaluated and then display: 12

% previous B is also refined to: 31415/ _

17 Aug 2007 CS2104, Lecture 1 50

Concept of Higher-Order Programming

Ability to pass functions as arguments or results
We want to write a function for 1+2+...+n (GaussSum)

It is similar to Fact, except that:
0 “x7ig “4”

a the initial case value is not “0” but “1”

The two operators are written as functions; they will
be arguments for the generic function

fun {Add X Y} X+Y end

fun {Mul X Y} X*Y end

17 Aug 2007 CS2104, Lecture 1 51

‘ Concept of Higher-Order Programming

= The generic function is:
fun {GenericFact Op InitVal N}
1f N == 0 then InitVal
else {Op N {GenericFact Op
InitVvVal (N-1) }}
end

end

17 Aug 2007 CS2104, Lecture 1 52

Concept of Higher-Order Programming

The instances of this generic function may be:
fun {FactUsingGeneric N}
{GenericFact Mul 1 N}

end
fun {GaussSumUsingGeneric N}
{GenericFact Add 0 N}

end

They can be called as:

{Browse {FactUsingGeneric 5}}

{Browse {GaussSumUsingGeneric 5} }

17 Aug 2007 CS2104, Lecture 1 53

Concept of Concurrency

Is the ability of a program to run independent
activities (not necessarily to communicate)

A thread is an executing program
Concurrency is introduced by creating threads

thread P1 in
Pl = {FactUsingGeneric 5}

{Browse P1}

end

thread P2 in
P2 = {GaussSumUsingGeneric 5}

{Browse P2}

end

17 Aug 2007 CS2104, Lecture 1

54

Concept of Datatlow

Is the ability of an operation to wait until all its variables
become bounded
declare X 1n

thread {Delay 5000} X = 10 end
thread {Browse X * X} end
thread {Browse ’"start’} end

The second srowse waits for x to become bound

x = 10 and x = x can be done in any order, so dataflow
execution will always give the same result

declare X 1n

thread {Delay 5000} {Browse X * X} end
thread X = 10 end

thread {Browse ’'start’} end

Dataflow concurrency (Chapter 4)

17 Aug 2007 CS2104, Lecture 1 55

Concept of Object

It is a function with internal memory (cell)
declare

local C 1in
C = {NewCell 0}
fun {Incr}
C := @C + 1
@C
end
fun {Read} @C end
end
C is a counter object, Incr and Read are its interface

The declare statement makes the variables ITncr and Read
globally available. Incr and Read are bounded to functions

17 Aug 2007 CS2104, Lecture 1 56

Concept of Object-Oriented Programming

Encapsulation
o Variable C is visible only between 1ocal and last end

o User can modify C only through Incxr function (the counter

will work correctly)
o User can call only the functions (methods) from the interface

{Browse {Incr}}
{Browse {Read}}
Data abstraction (Section 6.4)

o Separation between interface and implementation
o User program does not need to know the implementation

Inheritance (Chapter 7)

57

17 Aug 2007 CS2104, Lecture 1

Concept of Class

It is a “factory” which creates objects
declare

fun {ClassCounter} C Incr Read 1in
C = {NewCell 0}
fun {Incr}

C := (@dC + 1
@cC

end

fun {Read}
@cC

end

counter (incr:Incr read:Read)
end

17 Aug 2007 CS2104, Lecture 1

58

Concept of Class

ClassCounter is a function that creates a new
cell and returns new functions: Incr and Read
(recall higher-order programming)

The record result groups the methods so that they
can be accessed by its fields.

declare
Counterl = {ClassCounter}
Counter?2 = {ClassCounter}

The methods can be accessed by “.” (dot) operator
{Browse {Counterl.incr}}

{Browse {CounterZ.read}}

17 Aug 2007 CS2104, Lecture 1

59

Concept of Nondeterminism

It is concurrency + state

The order in which threads access the state can
change from one execution to the next

The time when operations are executed is not
Known

Interleaving (mixed order of threads statements) is

dangerous (one of most famous concurrent

programming error :

o [N.Leveson, C.Turner: An investigation of the Therac-25
accidents. I[EEE Computer, 26(7):18-41, 1993])

Solution: An operation is atomic if no intermediate

states can be observed (Chapter 8)

17 Aug 2007 CS2104, Lecture 1

Summary

Oz, Mozart

Variable, Type, Cell

Function, Recursion, Induction
Correctness, Complexity

Lazy Evaluation

Higher-Order Programming
Concurrency, Dataflow
Obiject, Classes
Nondeterminism

17 Aug 2007 CS2104, Lecture 1

61

Reading suggestions

From [van Roy,Haridi; 2004]

o Chapter 1

0 Appendix A

o Exercises 1.18.1-1.18.10

From [Tucker, Noonan; 2002]

o Chapter 1

o Exercises 1.1-1.7 from [Tucker, Noonan; 2002]

First lab/assignment: Fri 24 Aug 2007
(15:00-18:00 Venue : ?) Compulsory
attendance. Choose a 1-hr session.

17 Aug 2007 CS2104, Lecture 1

62

