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Stateful Programming
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� Stateful programming

� what is state?

� cells as abstract datatypes

� the stateful model

� relationship between the declarative model and
the stateful model

� indexed collections:

� array model

� parameter passing:

� system building

� component-based programming
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State as a
group of
memory cells

• Box O can remember
information between
independent invocations,
it has a memory

• Basic elements of
explicit state

• Index datatypes
• Basic techniques and

ideas of using state in
program design

Group of functions and
procedures that operate
on the state

An Interface that hides
the state

Box O
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State as a
group of
memory cells

• What is the difference
between implicit state
and explicit state?

• What is the difference
between state in general
and encapsulated state?

• Component based
programming and object-
oriented programming

• Abstract data types using
encapsulated state

Group of functions and
procedures that operate
on the state

An Interface that hides
the state

Box O
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� State is a sequence of
values that evolves in
time that contains the
intermediate results of a
desired computation

� Declarative programs
can also have state
according this definition

� Consider the following
program

fun {Sum Xs A}
case Xs
of X|Xr then {Sum Xr A+X}
[] nil then A
end
end

{Show {Sum [1 2 3 4] 0}}
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The two arguments Xs and A

represents an implicit state

Xs A

[1 2 3 4] 0

[2 3 4] 1

[3 4] 3

[4] 6

nil 10

fun {Sum Xs A}
case Xs
of X|Xr then {Sum Xr A+X}
[] nil then A
end

end

{Show {Sum [1 2 3 4] 0}}
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Extends beyond declarative programming model
• support general concurrency
• support memory capability
• efficiency reasons

An explicit state (in a procedure)  is a state whose
lifetime extends over more than one procedure call
without being present in the procedure’s arguments.
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Xan unbound
variable

X

A cell C is created 
with initial value 5
X is bound to C
@X is bound to 5

5

XCell C is assigned
the value 6,
@X is bound to 6

6

C

C
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Xan unbound
variable

X 5

X 6

C

C

• The cell is a value
container with a unique
identity/address
• X is really bound to the
identity/address of the
cell
• When the cell is
assigned, X does not
change

Cell C is assigned
the value 6,
@X is bound to 6

A cell C is created 
with initial value 5
X is bound to C
@X is bound to 5
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� Agents maintain implicit state

� state maintained as values passed as arguments

� Agents encapsulate state

� state is only available within one agent

� in particular, only one thread

� With cells we can have explicit state

� programs can manipulate state by manipulating
cells
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� So far, the considered models do not have

explicit state

� Explicit state is of course useful

� algorithms might require state (such as arrays)

� the right model for some task
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� Programs should be modular

� composed from components

� Some components can use state

� use only, if necessary

� Components from outside (interface) can still
behave like functions
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� Many useful abstractions are abstract

datatypes using encapsulated state

� arrays

� dictionaries

� queues

� …

�� �� � �� �� �	 �
�
�


� � �� �� 	 �� 	 	 	 �

&HOOV

�� �� � �� �� �	 �
�
�


� � �� �� 	 � � 	 	 	 �

&HOOV�DV�$EVWUDFW 'DWDW\SHV
� C={NewCell X}

� creates new cell C

� with initial value X

� X={Access C} or equivalently X=@C

� returns current value of C

� {Assign C X} or equivalently C:=X

� assigns value of C to be X

� {Exchange C X Y} or equivalently X=C:=Y

� atomically assigns Y into C and bind old value to X
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� Are a model for explicit state

� Useful in few cases on itself

� Device to explain other stateful datatypes
such as arrays
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X = {NewCell 0}

{Assign X 5}

Y = X

{Assign Y 10}

{Access X} == 10 Æ true

X == Y Æ true

X 0

Y

510
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X = {NewCell 0}

{Assign X 5}

Y = X

{Exchange Y Z 10}

Z is the old value of cell Y

X 0

X 5

Y

X 10

Y
5Z
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� X = {NewCell 10}

Y = {NewCell 10}

� X == Y % returns false

� Because X and Y refer to
different cells, with different
identities

� {Access X} == {Access Y}
returns true

X 10

Y 10
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w = f(x)
z = person(a:y)
y = D1
u = D2
x

Semantic stack
(Thread 1)

Semantic stack
(Thread n)

D1: w
D2: x
....
....

.....

Single-assignment
store

mutable store
(for cells)
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¢V²�� skip empty statement

| ¢V�² ¢V�² statement sequence
_ ���
| thread ¢V�² end thread creation
| {NewCell ¢[² ¢F²} cell creation
_ {Exchange ¢F² ¢[² ¢\²} cell exchange
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| {NewCell ¢x² ¢c²} cell creation
| {Exchange ¢c² ¢x² ¢y²} cell exchange

Exchange: Unify (bind) ¢x² to the old value of ¢c² and
set the content of the cell ¢c² to ¢y²
proc {Assign C X} {Exchange C _ X} end

fun {Access C} local X in

{Exchange C X X} X end end

NewCell: Create a new cell ¢c² with initial content ¢x²
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� Up to now the computation model we

introduced in the previous lectures did not
have any notion of explicit state

� An important question is: do we need explicit
state?

� There are a number of reasons for
introducing state, we discuss some of them
here
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� A system (program) is modular if changes

(updates) in the program are confined to the
components where the functionality are
changed

� Here is an example where introduction of
explicit state in a systematic way leads to
program modularity compared to programs
that are written using only the declarative
model (where every component is a function)
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� Assume we have three
persons: P, U1 and U2

� P is a programmer that
developed a component
M that provides two
functions F and G

� U1 and U2 are system
builders that use the
component M

fun {MF}

fun {F ...}
¢'HILQLWLRQ�RI�)²

end
fun {G ...}
¢'HILQLWLRQ�RI�*²

end

in ’export’ (f:F g:G)

end

M = {MF}
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� Assume we have three
persons: P, U1 and U2

� P is a programmer that
developed a component
M that provides two
functions F and G

� U1 and U2 are system
builders that use the
component M

functor MF

export f:F g:G

define

fun {F ...}

¢'HILQLWLRQ�RI�)²
end

fun {G ...}

¢'HILQLWLRQ�RI�*²
end

end
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� User U2 has a demanding

application

� He wants to extend the
module M to enable him to
monitor how many times
the function F is invoked in
his application

� He goes to P, and asks him
to do so without changing
the interface to M

fun {M}

fun {F ...}
¢'HILQLWLRQ�RI�)²

end
fun {G ...}

¢'HILQLWLRQ�RI�*²
end

in ’export’ (f:F g:G)

end
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� This cannot be done in the declarative model,
because F cannot remember its previous invocations

� The only way to do it there is to change the interface
to F by adding two extra arguments FIn and FOut

fun {F ... +FIn ?FOut} FOut = FIn+1 ... end

� The rest of the program always remembers the
previous number of invocations (FIn and FOut)
returns the new number of invocation

� But this changes the interface!

�� �� � �� �� �	 �
�
�


� � �� �� 	 � � 	 	 � �

fun {MF}

X = {NewCell 0}
fun {F ...}

{Assign X {Access X}+1}

¢'HILQLWLRQ�RI�)²
end
fun {G ...}

¢'HILQLWLRQ�RI�*²
end

fun {Count} {Access X} end

in ’export’(f:F  g:G c:Count)

end

M = {MF}

(QFDSVXODWHG�6WDWH�9

� A cell is created when
MF is called

� Due to lexical scoping
the cell is only visible to
the created version of F
and Count

� The M.f did not change

� New function M.c is
available

� X is hidden only visible
inside M (encapsulated
state)
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� Declarative programming guarantees by

construction that each procedure computes a
function

� This means each component (and
subcomponent) is a function

� It is possible to use encapsulated state (cells)
so that a component is declarative from outside, 
and stateful from the inside

� Considered as a black-box the program
procedure is still a function
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Æ 1 or 2, followed by a
“failure unification”

Æ 0, 1, or 2 depending on the
order of threads execution

� Declarative:
declare X

thread X=1 end

thread X=2 end

{Browse X}

� Stateful
declare X={NewCell 0}

thread X:=1 end

thread X:=2 end

{Browse @X}
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local
fun {Sum1 Xs A}
case Xs of X|Xr

then {Sum1 Xr A+X}
[] nil then A
end

end
in
fun {Sum Xs}
{Sum1 Xs 0}

end
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fun {Sum Xs}
fun {Sum1 Xs A}
case Xs of X|Xr

then {Sum1 Xr A+X}
[] nil then A
end

end
in
{Sum1 Xs 0}

end

fun {Sum Xs}
fun {Sum1 Xs}
case Xs of X|Xr

then
{Assign A X+{Access A}}

{Sum1 Xr}
[] nil then {Access A}
end
end
A = {NewCell 0}

in
{Sum1 Xs}

end
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fun {Sum Xs}
fun {Sum1 Xs}
case Xs of X|Xr then

{Assign A X+{Access A}}
{Sum1 Xr}

[] nil then
{Access A}

end
end
A = {NewCell 0}

in
{Sum1 Xs}

end

fun {Sum Xs}
A = {NewCell 0}

in
{ForAll Xs

proc {$ X}
{Assign A 
X+{Access A}}

end}
{Access A}

end
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fun {Reverse Xs}
Rs={NewCell nil}

in
for X in Xs do

Rs:=X|@Rs end
@Rs
end

Rs is a hidden internal state that do not live beyond
the lifetime of above method.
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� Indexed collections groups a set of (partial) values

� The individual elements are accessible through an
index

� The declarative model provides:

- tuples, e.g. date(17 december 2001)

- records, e.g. date(day:17 month:december
year:2001)

. We can now add state to the fields

- arrays

- dictionaries
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� An array is a mapping from integers to

(partial) values
� The domain is a set of consecutive integers,

with a lower bound and an upper bound
� The range can be mutated (change)
� A good approximation is to think of arrays as

a tuple of cells
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� Simple array

- fields indexed from 1 to n

- values can be accessed, assigned, and
exchanged

� Model: tuple of cells
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1 A={NewArray L H I}

2 create array with fields from L to H

2 all fields initialized to value I

1 X={ArrayAccess A N}

2 return value at position N in array A

1 {ArrayAssign A N X}

2 set value at position N to X in array A

1 {ArrayExchange A N X Y}

2 change value at position N in A from X to Y

1 A2={Array.clone A}

2 returns a new array with same indices and contents as A
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3 A = {MakeArray L H F}

� Creates an array A

where for each index I

is mapped to {F I}

fun {MakeArray L H F}
A = {NewArray L H unit}

in

for I in L..H do

A.I := {F I}
end

A

end
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3 R = {Array2Record L A}

. Define a function that takes a label L and an array A, it
returns a record R whose label is L and whose
features are from the lower bound of A to the upper
bound of A

. We need to know how to make a record

3 R = {Record.make L Fs}

- creates a record R with label L and a list of features
(selector names), returns a record with distinct fresh
variables as values

3 L = {Array.low A} and H = {Array.high A}

- Return lower bound and higher bound of array A
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fun {Array2Record LA A}

L = {Array.low A}

H = {Array.high A}

R = {Record.make LA {From L H}}

in

for I in L..H do

R.I = A.I
end

R

end
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fun {Tuple2Array T}

H = {Width T}

in

{MakeArray 1 H

fun{$ I} T.I end}

end
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Tuple

Array Record

Dictionary

Add state Add atoms as indices

Add stateAdd atoms as indices

stateless collection

stateful collection
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2WKHU�&ROOHFWLRQV

lists

streams

stacks

queues

SRWHQWLDOO\
LQILQLWH�OLVWV

VWDWHOHVV

ports

JHQHUDOL]HV
VWUHDPV�WR�VWDWHIXO
PDLOER[HV

stateless collection

stateful collection
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� Variety of parameter passing mechanisms

can be simulated using cells, e.g.

- Call by Reference

- Call by Variable

- Call by Value

- Call by Value-Result

- Call by Name

- Call by Need
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� Pass language entity to methods

� What is a language entity?

- single-assignment variable

- cell

- local variable (in C)

4 Is it address? &v

4 Is it its value? v
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� Identity of cell is passed
� (special case of call by reference) 

proc {Sqr A}

A:=@A+1

A:=@A*@A

end

local C={NewCell 0} in
C:=5
{Sqr C}
{Browse @C}

end
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� A value is passed and put into a local cell. 

proc {Sqr A}

D={NewCell A}

in D:=@D+1

D:=@D*@D

end

local C={NewCell 0} in
C:=5
{Sqr @C}
{Browse @C}

end
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� A value is passed into local cell on entry of

method, and passed out on exit of method.

proc {Sqr A}

D={NewCell @A}

in D:=@D+1

D:=@D*@D

A:=@D   

end

local C={NewCell 0} in
C:=5
{Sqr C}
{Browse @C}

end
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� A function for each argument that returns a

cell on invocation.  

proc {Sqr A}

{A}:=@{A}+1

{A}:=@{A}*@{A}   

end

local C={NewCell 0} in
C:=5
{Sqr fun {$} C end}
{Browse @C}

end
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� The function is called once and used

multiple times.    

proc {Sqr A}

D={A}

in D:=@D+1

D:=@D*@D

end

local C={NewCell 0} in
C:=5
{Sqr fun {$} C end}
{Browse @C}

end

�� �� � � !" �# �$�
%

&' � �( )' # � * # # , $

6\VWHP�%XLOGLQJ
� Abstraction is the best tool to build complex

system
� Complex systems are built by layers of

abstractions
� Each layer have two parts:

- Specification, and

- Implementation

� Any layer uses the specification of the lower
layer to implement its functionality
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3URSHUWLHV�1HHGHG�WR�6XSSRUW�WKH
3ULQFLSOH�RI�$EVWUDFWLRQ
� Encapsulation

- Hide internals from the interface

� Compositionality

- Combine parts to make new parts

� Instantiation/invocation

- Create new instances of parts
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&RPSRQHQW�%DVHG�3URJUDPPLQJ
� Supports

- Encapsulation

- Compositionality

- Instantiation
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� Supports

- Encapsulation

- Compositionality

- Instantiation

� Plus

- Inheritance
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� Component design

- Encapsulate design decisions

- Avoid changing component interfaces

� System design

- Reduce external dependency

- Reduce levels of indirection

- Predictable dependencies

- Make decisions at right level

- Document violations
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� Open/secure

- Open – encapsulation enforced by programmer

- Secure – implementation details not accessible to
user

� Unbundled/bundled

- Value/operations defined separately

- Value/operation together, e.g. objects
� Explicit state/declarative

- declarative – no mutable state
e.g. push :: {Stack A, A} o State A
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� Make values secure using keys

{NewName} return a fresh name
N1==N2 compares names N1 and N2

unwrap with key

wrap with key

secure
data

secure
data

operations

secure adt
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proc {NewWrapper ?Wrap ?Unwrap}

Key={NewName}

in

fun {Wrap X}

fun {$ K} if K==Key then X

else raise error end end

end

fun {Unwrap W}

{W Key}

end

end
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local Wrap Unwrap in

{NewWrapper Wrap Unwrap}

fun {NewStack} {Wrap nil} end

fun {Push S E} {Wrap E|{Unwrap S}} end

fun {Pop S E}

case {Unwrap S} of

X|S1 then E=X {Wrap S1} end

end

fun {IsEmpty S} {Unwrap S}==nil end

end
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. ”Good software is good in the large and in the small,
in its high level architecture and in its low-level
details”. In Object-oriented software construction by
Bernard Meyer

. What is the best way to build big applications?

. A large application is (almost) always built by a team

. How should the team members communicate?

. This depends on the application’s structure
(architecture)

. One way is to structure the application as a
hierarchical graph
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Interface

Component instance

External
world
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. Team members are assigned individual components

. Team members communicate at the interface

. A component, can be implemented as a record that
has a name, and a list of other component instances
it needs, and a higher-order procedure that returns a
component instance with the component instances it
needs

. A component instance has an interface and an
internal entities that serves the interface
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. As the system evolves, a component implementation
might change or even the model changes

2 declarative (functional)

2 stateful sequential

2 concurrent, or

2 relational

. The interface of a component should be independent
of the computation model used to implement the
component

. The interface should depend only on the externally
visible functionality of the component
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. The power of the component based infrastructure
depends to a large extent on the expressiveness of
the interface

. How does components communicate with each
others?

. We have three possible case:

2 The components are written in the same language

2 The components are written in different languages

2 The components are written in different computation model

�� �� � � !" �# �$�
%

&' � �( )' # � * # # � /

&RPSRQHQWV�LQ�WKH�6DPH�/DQJXDJH
. This is easy

. In Mozart/Oz, component instances are modules
(records whose fields contain the various services
provided by the component-instance part)

. In Java, interfaces are provided by objects (method
invocations of objects)

. In Erlang, component instances are mainly
concurrent processes (threads), communication is
provided by sending asynchronous messages
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. An intermediate common language is defined to allow
components to communicate given that the language
provide the same computation model

. A common example is CORBA IDL (Interface Definition
Language) which maps a language entity to a common
format at the client component, and does the inverse
mapping at the service-provider component

. The components are normally reside on different
operating system processes (or even on different
machines)

. This approach works if the components are relatively
large and the interaction is relatively infrequent
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A component C1
calling the function
(method) f(x) in the
Component C2

Translate f(x) from
language L1 (structured
data) to IDL
(sequence of bytes)

Translate f(x) from
language IDL
(sequence of bytes) to
language L2 (structured
data)

A component C2
invoking the function
(method) f(x)

�� �� � � !" �# �$�
%

&' � �( )' # � * # #  #

6XPPDU\
� Stateful programming

- what is state?

- cells as abstract datatypes

- the stateful model

- relationship between the declarative model and
the stateful model

- indexed collections:

4 array model

- system building

4 component-based programming
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� 2nd Nov 2007
� Duration : 1.5 hour
� All topics so far
� But focus on more on recent topics.
� Open-Book
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� Chapter 6, Sections 6.1-6.3, 6.5, 6.7 from

[van Roy,Haridi; 2004]
� Exercises 6.10.1-6.10.7 from [van Roy,Haridi;

2004]
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fun {Sum Xs}
A = {NewCell 0}

in
{ForAll Xs

proc {$ X}
{Assign A
X+{Access A}}

end}
{Access A}

end

fun {Sum Xs}
A = {NewCell 0}

in
for X in Xs do
{Assign A

X+{Access A}}
end
{Access A}

end

� The state is encapsulated
inside each procedure
invocation


