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Relational and Constraint Programming
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Reminder of the Last Lecture

� Stateful programming
� what is state?
� cells as abstract datatypes
� the stateful model
� relationship between the declarative model and 

the stateful model
� indexed collections: 

� array model

� system building
� component-based programming
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Overview

� Relational Programming
� Choice and Fail Operations  
� Constraint Programming
� Basic Constraints, Propagators and Search
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Relations

� Functions are directional and computes 
output(s) from inputs.

� Relations are bidirectional and used to relate 
a tuple of parameters.   

inputs outputs

parameters
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Examples of Relations
� Parent-child relations e.g.  parent(X,Y)
� Classification e.g. male(X) or female(Y)

� Operations e.g. append(Xs,Ys,Zs)
� Databases: employee(Name,… ) relational 

tables?
� Geometry problems: how are sides of 

rectangles related, e.g. rect(X,Y,X,Y)
� Each function is a special case of relation.
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The Relational Model

¢s²::= skip empty statement
| ¢s1² ¢s2² statement sequence 
| ...
| choice ¢s1² [] ... [] ¢sn² end choice
| fail failure

Choice allows alternatives to be explored, 
while failure indicates no answer at that branch.
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Clothing Design Example
fun {Soft} choice white [] yellow end end
fun {Hard} choice red [] blue end end

proc {Contrast C1 C2}
choice  C1={Soft} C2={Hard}

[] C1={Hard} C2={Soft} end
end

fun {Suit}
Shirt Pants Socks

in {Contrast Shirt Pants}
{Contrast Pants Socks}
if Shirt==Socks then fail end

suit(Shirt Pants Socks)
end
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Search Tree with Choices

{Soft}

white yellow
choice

{Hard}

red blue
choice

{Solve F} returns a lazy list of solution for a relational program
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Search Tree with Choices
{Contrast C1 C2}

C1={Soft}
C2={Hard}

choice

C1={Hard}
C2={Soft}

C1=white
C2={Hard}

C1=yellow
C2={Hard}

choice

C1=white
C2=red

C1=while
C2=blue

choice choice

choice

{Solve (fun $ C1 C2 in {Contrast C1 C2} p(C1 C2) end)}
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One Solution
� Due to the use of lazy list we can return some or all 

of the solutions.

� Example:

fun {SearchOne F}
L={Solve F}  

in 
if L==nil then nil else [L.1] end

end
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All Solution
{Contrast C1 C2}

C1={Soft}
C2={Hard}

choice

C1={Hard}
C2={Soft}

C1=white
C2={Hard}

C1=yellow
C2={Hard}

choice

C1=white
C2=red

C1=while
C2=blue

choice choice

choice

{SearchAll (fun $ C1 C2 in {Contrast C1 C2} 
p(C1 C2) end)}
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Code to Search All Solutions

� Due to lazy list, need to touch every element 
in the entire list for all solutions.  

fun {SearchAll F}
L={Solve F}
proc {TouchAll L}

if L==nil then nil
else {TouchAll L.2} end

end
in 

{TouchAll L}
L

end
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Example

� Note that

{Browse {SearchAll Suit}} 

[suit(white red yellow)
suit(while blue yellow)
suit(yellow red white)
suit(yellow blue white)
suit(red white blue)
suit(red yellow blue)
suit(blue white red)
suit(blue yellow red)

]
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Numeric Example

fun {Digit}
choice 0 [] 1 [] 2 [] ... [] 9 end

end
fun {TwoDigit}
10*{Digit}+{Digit}  

end
fun {StrangeTwoDigit}
{Digit}+10*{Digit}  

end

� What is the difference between last two 
functions?  
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From Functions to Procedures
fun {Append A B}
case A of nil then B

[] X|As then X|{Append As B} end
end

proc {Append A B ?C}
case A of nil then C=B

[] X|As then Cs in
C=X|Cs  {Append As B Cs} end

end



9  Nov 2007 CS2104, Lecture 12 16

To Nondeterministic Relations

proc {Append ?A ?B ?C}
choice

A=nil C=B
[] As Cs X in

A=X|As  C=X|Cs  {Append As B Cs}
end

end

� Use choice and all parameters may be output.
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Prolog – a logic language

append(nil,Ys,Ys.
append([X|Xs],Ys,[X|Zs]) 

:- append(Xs,Ys,Zs)

� append relation.

parent(X,Y):-father(X,Y).
parent(X,Y):-mother(X,Y).
grandfather(X,Y):-father(X,Z),parent(Z,Y).
son(X,Y):-male(X),parent(Y,X).
ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z),ancestor(Z,Y)

� relationships.
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Constraint Programming

� Ultimate in declarative modelling.
� Here, we focus on Finite Domain Constraint 

Programming CP(FD); 
� CP initially conceived as framework CLP(X)   

[Jaffar, Lassez 1987]
� Within CP(FD), we focus on constraint-based 

tree search
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Definitions and Notations

� Finite domain:
� is a finite set of nonnegative integers. 
� The notation m#n stands for the finite domain m...n. 

� Constraints over finite domains:
� is a formula of predicate logic. 
� Examples: 

� X=5

� X�1#9

� X2-Y2=Z2
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Constraint Solving
� Given: a satisfiable constraint C and a new 

constraint C’.
� Constraint solving means deciding whether 

C � C’ is satisfiable.
� A finite domain problem has at most finitely 

many solutions, provided we consider only 
variables that occur in the problem. 

� Example: 
C: n > 2
C’: an +  bn =  cn
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Constraint Solving

� Constraint solving is not possible for general 
constraints.

� Constraint programming separates constraints 
into:
� basic constraints: complete constraint solving
� non-basic constraints: propagation-and-search 

(incomplete)
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Basic Constraints in Finite Domain 
Constraint Programming

� Basic constraints are conjunctions of constraints of 
the form  X � S, where S is a finite set of integers.

� Constraint solving is done by intersecting domains.
� Example:

C  = ( X�{1..10} � Y�{9..20}  )

C’ = ( X�{9..15} � Y�{14..30} )

� In practice, we keep a solved form, storing the current 
domain of every variable.
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Propagate-and-Search
� Keep partial information. During the calculation, we 

keep partial information about a solution, e.g.  X>10
� Use local deduction. Each of the constraints uses the 

partial information to deduce more information, e.g. 
combining X<Y and X>10, we get Y>11 (assuming Y is an 
integer).

� Do controlled search. When no more local deductions 
can be done, then we have to search. 
� A search step consists in splitting a CSP P into two new 

problems, (P ^ C) and (P ^ ¬C), where C is a new constraint.
� Since each new problem has an additional constraint, it can do 

new local deductions. 
� To find the solutions of P, it is enough to take the union of the 

solutions of the two new problems. 
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A Complete Constraint Program

� Problem: Design a rectangle out of 24 unit 
squares so that its perimeter is exactly 20?

� Encoding: denote x and y the lengths of the 
rectangle’s sides. Then we get two constraints:
� x * y = 24
� 2 * (x + y) = 20, or equivalently x + y = 10

� Basic constraints: x � {1, 2, . . . , 9} and y � {1, 
2, . . . , 9}, because x and y are strict positive 
integers and x + y = 10
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Propagators

� The two initial constraints can be viewed as 
propagators because they can be used to do local 
deductions:
� x * y = 24

� x + y = 10

� Is there any other possible additional constraint?
� Yes, x � y 

� It does no harm (since we can always flip a rectangle over)
� It will make the problem’s solution easier (technically, it 

reduces the size of the search space). 
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Oz Constraints Programming Notations

� Basic constraints are denoted with “::” symbol, e.g. 
the Oz notation X::1#9 means x � {1, 2, . . . , 9}. 

� Propagators are denoted by adding the colon : to their 
name, e.g. X*Y=:24, X+Y=:10, and X=<:Y

� A computation space contains the propagators and 
the basic constraints on the problem variables.

� Example: the first computation space is denoted by S1: 
� X*Y=:24 X+Y=:10 X=<:Y || X::1#9 Y::1#9
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Local Deductions I

� Each propagator now tries to do local deductions.
� For example, the propagator X*Y=:24 notices that 

since Y is at most 9, that X cannot be 1 or 2.
� Therefore X is at least 3. It follows that Y is at most 8.
� The same reasoning can be done with X and Y

reversed. 
� So, the propagator updates the computation space:

� S1 : X*Y=:24 X+Y=:10 X=<:Y || X::3#8 Y::3#8



9  Nov 2007 CS2104, Lecture 12 28

Local Deductions II

� Now the propagator X+Y=:10 enters the picture. 
� It notices that since X cannot be 2, therefore Y

cannot be 8. 
� Similarly, X cannot be 8 either. 

� This gives
� S1 : X*Y=:24 X+Y=:10 X=<:Y || X::3#7 Y::3#7
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Local Deductions III

� Now, the propagator X*Y=:24 can do more deduction. 
� Since X is at most 7, therefore Y must be at least 4. 
� If Y is at least 4, then X must be at most 6. 

� This gives
� S1 : X*Y=:24 X+Y=:10 X=<:Y || X::4#6 Y::4#6

� At this point, none of the propagators sees any 
opportunities for adding information.

� We say that the computation space has become 
stable. 
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Search I

� How do we continue? We have to make a guess. 

� We get two computation spaces: one in which 
X=4 and another in which X�4. This gives
� S2 : X*Y=:24 X+Y=:10 X=<:Y || X=4 Y::4#6
� S3 : X*Y=:24 X+Y=:10 X=<:Y || X::5#6 Y::4#6
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Search II

� The local deductions give the computation space S2:
� S2 : X*Y=:24 X+Y=:10 X=<:Y || X=4 Y=6
� At this point, each of the three propagators notices 

that it is completely solved (it can never add any more 
information) and therefore removes itself from the 
computation space. We say that the propagators are 
entailed.

� This gives
� S2 : (empty) || X=4 Y=6

� The result is a solved computation space. It contains 
the solution X=4 Y=6. 
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Search III

� Local deductions for S3: 
� Propagator X*Y=:24 deduces that X=6 Y=4 is the 

only possibility consistent with itself.
� Then propagator X=<:Y sees that there is no 

possible solution consistent with itself.

� This causes the space to fail:
� S3 : (failed)
� A failed space has no solution. 

� We conclude that the only solution is X=4 Y=6.
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A Mozart Implementation I

� We define the problem by writing a one 
argument procedure whose argument is the 
solution. 

� Running the procedure sets up the basic 
constraints, the propagators, and selects a 
distribution strategy. 

� The distribution strategy defines the 
“guess” that splits the search in two.
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A Mozart Implementation II

declare

proc {Rectangle ?Sol}

sol(X Y)=Sol

in

X::1#9 Y::1#9

X*Y=:24 X+Y=:10 X=<:Y

{FD.distribute naive Sol}

end

{Browse {SearchAll Rectangle}}
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A Mozart Implementation III

� The solution is returned as the tuple sol(X Y)

� Basic constraints: X::1#9 and Y::1#9
� Propagators: X*Y=:24, X+Y=:10, and X=<:Y
� The FD.distribute call selects the distribution 

strategy. 
� The chosen strategy (naive) selects the first 

nondetermined variable in Sol, and picks the 
leftmost element in the domain as a guess. 
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Summary so far: Computation Space

� Is the fundamental concept used to implement 
propagate-and-search, which contains basic 
constraints and propagators 

� Solving a problem alternates two phases:
� Local deductions (using the propagators). 
� Search step (when the space is stable). Two copies of the 

space are first made. A basic constraint C is then “guessed”
according to the distribution strategy. The constraint C is then 
added to the first copy and ¬C is added to the second copy. 
We then continue with each copy. The process is continued 
until all spaces are either solved or failed. 

� This gives us all solutions to the problem.
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Constraint Programming in a Nutshell

SEND MORE  MONEY
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Constraint Programming in a Nutshell

SEND + MORE  = MONEY
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SEND + MORE = MONEY

Assign distinct digits to the letters
S, E, N, D, M, O, R, Y
such that          

S E N D
+   M O R E

= M O N E Y
holds.
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SEND + MORE = MONEY

Assign distinct digits to the letters
S, E, N, D, M, O, R, Y
such that          

S E N D
+   M O R E

= M O N E Y
holds.

Solution
9 5 6 7

+   1 0 8 5

= 1 0 6 5 2
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Modeling

� Formalize the problem as a constraint 
problem:

� number of variables:  n
� constraints:  c1,…,cm � =n

� problem: Find   a = (v1,…,vn)� =n such 
that a � ci , for all  1 d i d m
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A Model for  MONEY

� number of variables:  8
� constraints:

c1 = {(S,E,N,D,M,O,R,Y)� =8 | 0 d S,…,Y d 9 }

c2 = {(S,E,N,D,M,O,R,Y)� =8 |
1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y}
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A Model for  MONEY (continued)

� more constraints 

c3 = {(S,E,N,D,M,O,R,Y)� =8 | S z 0 }

c4 = {(S,E,N,D,M,O,R,Y)� =8 | M z 0 }

c5 = {(S,E,N,D,M,O,R,Y)� =8 | S…Y all different}
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Solution for  MONEY

c1 = {(S,E,N,D,M,O,R,Y)� =8 | 0dS,…,Yd9 }
c2 = {(S,E,N,D,M,O,R,Y)� =8 |

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y}

c3 = {(S,E,N,D,M,O,R,Y)� =8 | S z 0 }

c4 = {(S,E,N,D,M,O,R,Y)� =8 | M z 0 }

c5 = {(S,E,N,D,M,O,R,Y)� =8 | S…Y all different}

� Solution: (9,5,6,7,1,0,8,2)� =8 
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A Mozart Implementation

proc {Money Root}
S E N D M O R Y in
Root=sol(s:S e:E n:N d:D m:M o:O r:R y:Y)
Root ::: 0#9
{FD.distinct Root}
S \=: 0   M \=: 0

1000*S + 100*E + 10*N + D
+            1000*M + 100*O + 10*R + E
=: 10000*M + 1000*O + 100*N + 10*E + Y
{FD.distribute ff Root}

end

{Browse {SearchAll Money}}

Modeling

Propagation

Branching

Exploration



9  Nov 2007 CS2104, Lecture 12 46

Money Demo

�To display the solutions:

{Browse {SearchAll Money}}
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Relation to Integer Programming 

� More general notion of problem; constraints 
can be any relation, not just arithmetic or 
even just linear arithmetic constraints

� De-emphasize optimization (optimization as 
after-thought)

� Focus on software engineering 
� no push-button solver, but glass-box or no-box
� experimentation platforms
� extensive support for “performance debugging”
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Constraint Programming Systems
� Role: support elements of constraint 

programming
� Provide propagation algorithms for constraints

� all different (e.g. wait for fixing)
� summation (e.g. interval consistency)

� Allow choice of branching algorithm (e.g. first-fail)
� Allow choice of exploration algorithm (e.g. depth-first 

search)
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Programming Systems for Finite Domain 
Constraint Programming
� Finite domain constraint programming libraries

� PECOS [Puget 1992]
� ILOG Solver [Puget 1993]

� Finite domain constraint programming 
languages
� CHIP [Dincbas, Hentenryck, Simonis, Aggoun 1988]
� SICStus Prolog [Haridi, Carlson 1995]
� Oz [Smolka and others 1995]
� CLAIRE [Caseau, Laburthe 1996]
� OPL [van Hentenryck 1998]
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Issues in Propagation

� Expressivity: What kind of information can 
be expressed as propagators?

� Completeness: What behavior can be 
expected from propagation?

� Efficiency: How much computational 
resources does propagation consume?
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Summary

� Relational Programming
� Choice and Fail Operations 
� Constraint Programming in a Nutshell
� Elements of Constraint Programming
� Constraint Programming in Oz
� Constraint Programming Techniques
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Last Week of Term for CS2104

� No formal lecture on 16Nov (Fri) 

� Instead, TA Cristina will provide consultation  
on 16Nov to answer questions at the lecture 
venue from 12-2pm.

� Tutorial for week of 12Nov will be handled by 
Cristina too. 
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Reading suggestions

� Chapter 9, sections 9.1-9.3 from [van 
Roy,Haridi; 2004]

� Exercises 9.8.1-9.8.5 from [van Roy,Haridi; 
2004]

� Chapter 12, sections 12.1-12.3 from [van 
Roy,Haridi; 2004]

� Exercises 12.6.1-12.6.5 from [van Roy,Haridi; 
2004]


