
9 Nov 2007 CS2104, Lecture 12 1

Programming Language Concepts,
CS2104
Lecture 12

Relational and Constraint Programming

9 Nov 2007 CS2104, Lecture 12 2

Reminder of the Last Lecture

� Stateful programming
� what is state?
� cells as abstract datatypes
� the stateful model
� relationship between the declarative model and

the stateful model
� indexed collections:

� array model

� system building
� component-based programming

9 Nov 2007 CS2104, Lecture 12 3

Overview

� Relational Programming
� Choice and Fail Operations
� Constraint Programming
� Basic Constraints, Propagators and Search

9 Nov 2007 CS2104, Lecture 12 4

Relations

� Functions are directional and computes
output(s) from inputs.

� Relations are bidirectional and used to relate
a tuple of parameters.

inputs outputs

parameters

9 Nov 2007 CS2104, Lecture 12 5

Examples of Relations
� Parent-child relations e.g. parent(X,Y)
� Classification e.g. male(X) or female(Y)

� Operations e.g. append(Xs,Ys,Zs)
� Databases: employee(Name,…) relational

tables?
� Geometry problems: how are sides of

rectangles related, e.g. rect(X,Y,X,Y)
� Each function is a special case of relation.

9 Nov 2007 CS2104, Lecture 12 6

The Relational Model

¢s²::= skip empty statement
| ¢s1² ¢s2² statement sequence
| ...
| choice ¢s1² [] ... [] ¢sn² end choice
| fail failure

Choice allows alternatives to be explored,
while failure indicates no answer at that branch.

9 Nov 2007 CS2104, Lecture 12 7

Clothing Design Example
fun {Soft} choice white [] yellow end end
fun {Hard} choice red [] blue end end

proc {Contrast C1 C2}
choice C1={Soft} C2={Hard}

[] C1={Hard} C2={Soft} end
end

fun {Suit}
Shirt Pants Socks

in {Contrast Shirt Pants}
{Contrast Pants Socks}
if Shirt==Socks then fail end

suit(Shirt Pants Socks)
end

9 Nov 2007 CS2104, Lecture 12 8

Search Tree with Choices

{Soft}

white yellow
choice

{Hard}

red blue
choice

{Solve F} returns a lazy list of solution for a relational program

9 Nov 2007 CS2104, Lecture 12 9

Search Tree with Choices
{Contrast C1 C2}

C1={Soft}
C2={Hard}

choice

C1={Hard}
C2={Soft}

C1=white
C2={Hard}

C1=yellow
C2={Hard}

choice

C1=white
C2=red

C1=while
C2=blue

choice choice

choice

{Solve (fun $ C1 C2 in {Contrast C1 C2} p(C1 C2) end)}

9 Nov 2007 CS2104, Lecture 12 10

One Solution
� Due to the use of lazy list we can return some or all

of the solutions.

� Example:

fun {SearchOne F}
L={Solve F}

in
if L==nil then nil else [L.1] end

end

9 Nov 2007 CS2104, Lecture 12 11

All Solution
{Contrast C1 C2}

C1={Soft}
C2={Hard}

choice

C1={Hard}
C2={Soft}

C1=white
C2={Hard}

C1=yellow
C2={Hard}

choice

C1=white
C2=red

C1=while
C2=blue

choice choice

choice

{SearchAll (fun $ C1 C2 in {Contrast C1 C2}
p(C1 C2) end)}

9 Nov 2007 CS2104, Lecture 12 12

Code to Search All Solutions

� Due to lazy list, need to touch every element
in the entire list for all solutions.

fun {SearchAll F}
L={Solve F}
proc {TouchAll L}

if L==nil then nil
else {TouchAll L.2} end

end
in

{TouchAll L}
L

end

9 Nov 2007 CS2104, Lecture 12 13

Example

� Note that

{Browse {SearchAll Suit}}

[suit(white red yellow)
suit(while blue yellow)
suit(yellow red white)
suit(yellow blue white)
suit(red white blue)
suit(red yellow blue)
suit(blue white red)
suit(blue yellow red)

]

9 Nov 2007 CS2104, Lecture 12 14

Numeric Example

fun {Digit}
choice 0 [] 1 [] 2 [] ... [] 9 end

end
fun {TwoDigit}
10*{Digit}+{Digit}

end
fun {StrangeTwoDigit}
{Digit}+10*{Digit}

end

� What is the difference between last two
functions?

9 Nov 2007 CS2104, Lecture 12 15

From Functions to Procedures
fun {Append A B}
case A of nil then B

[] X|As then X|{Append As B} end
end

proc {Append A B ?C}
case A of nil then C=B

[] X|As then Cs in
C=X|Cs {Append As B Cs} end

end

9 Nov 2007 CS2104, Lecture 12 16

To Nondeterministic Relations

proc {Append ?A ?B ?C}
choice

A=nil C=B
[] As Cs X in

A=X|As C=X|Cs {Append As B Cs}
end

end

� Use choice and all parameters may be output.

9 Nov 2007 CS2104, Lecture 12 17

Prolog – a logic language

append(nil,Ys,Ys.
append([X|Xs],Ys,[X|Zs])

:- append(Xs,Ys,Zs)

� append relation.

parent(X,Y):-father(X,Y).
parent(X,Y):-mother(X,Y).
grandfather(X,Y):-father(X,Z),parent(Z,Y).
son(X,Y):-male(X),parent(Y,X).
ancestor(X,Y):-parent(X,Y).
ancestor(X,Y):-parent(X,Z),ancestor(Z,Y)

� relationships.

9 Nov 2007 CS2104, Lecture 12 18

Constraint Programming

� Ultimate in declarative modelling.
� Here, we focus on Finite Domain Constraint

Programming CP(FD);
� CP initially conceived as framework CLP(X)

[Jaffar, Lassez 1987]
� Within CP(FD), we focus on constraint-based

tree search

9 Nov 2007 CS2104, Lecture 12 19

Definitions and Notations

� Finite domain:
� is a finite set of nonnegative integers.
� The notation m#n stands for the finite domain m...n.

� Constraints over finite domains:
� is a formula of predicate logic.
� Examples:

� X=5

� X�1#9

� X2-Y2=Z2

9 Nov 2007 CS2104, Lecture 12 20

Constraint Solving
� Given: a satisfiable constraint C and a new

constraint C’.
� Constraint solving means deciding whether

C � C’ is satisfiable.
� A finite domain problem has at most finitely

many solutions, provided we consider only
variables that occur in the problem.

� Example:
C: n > 2
C’: an + bn = cn

9 Nov 2007 CS2104, Lecture 12 21

Constraint Solving

� Constraint solving is not possible for general
constraints.

� Constraint programming separates constraints
into:
� basic constraints: complete constraint solving
� non-basic constraints: propagation-and-search

(incomplete)

9 Nov 2007 CS2104, Lecture 12 22

Basic Constraints in Finite Domain
Constraint Programming

� Basic constraints are conjunctions of constraints of
the form X � S, where S is a finite set of integers.

� Constraint solving is done by intersecting domains.
� Example:

C = (X�{1..10} � Y�{9..20})

C’ = (X�{9..15} � Y�{14..30})

� In practice, we keep a solved form, storing the current
domain of every variable.

9 Nov 2007 CS2104, Lecture 12 23

Propagate-and-Search
� Keep partial information. During the calculation, we

keep partial information about a solution, e.g. X>10
� Use local deduction. Each of the constraints uses the

partial information to deduce more information, e.g.
combining X<Y and X>10, we get Y>11 (assuming Y is an
integer).

� Do controlled search. When no more local deductions
can be done, then we have to search.
� A search step consists in splitting a CSP P into two new

problems, (P ^ C) and (P ^ ¬C), where C is a new constraint.
� Since each new problem has an additional constraint, it can do

new local deductions.
� To find the solutions of P, it is enough to take the union of the

solutions of the two new problems.

9 Nov 2007 CS2104, Lecture 12 24

A Complete Constraint Program

� Problem: Design a rectangle out of 24 unit
squares so that its perimeter is exactly 20?

� Encoding: denote x and y the lengths of the
rectangle’s sides. Then we get two constraints:
� x * y = 24
� 2 * (x + y) = 20, or equivalently x + y = 10

� Basic constraints: x � {1, 2, . . . , 9} and y � {1,
2, . . . , 9}, because x and y are strict positive
integers and x + y = 10

9 Nov 2007 CS2104, Lecture 12 25

Propagators

� The two initial constraints can be viewed as
propagators because they can be used to do local
deductions:
� x * y = 24

� x + y = 10

� Is there any other possible additional constraint?
� Yes, x � y

� It does no harm (since we can always flip a rectangle over)
� It will make the problem’s solution easier (technically, it

reduces the size of the search space).

9 Nov 2007 CS2104, Lecture 12 26

Oz Constraints Programming Notations

� Basic constraints are denoted with “::” symbol, e.g.
the Oz notation X::1#9 means x � {1, 2, . . . , 9}.

� Propagators are denoted by adding the colon : to their
name, e.g. X*Y=:24, X+Y=:10, and X=<:Y

� A computation space contains the propagators and
the basic constraints on the problem variables.

� Example: the first computation space is denoted by S1:
� X*Y=:24 X+Y=:10 X=<:Y || X::1#9 Y::1#9

9 Nov 2007 CS2104, Lecture 12 27

Local Deductions I

� Each propagator now tries to do local deductions.
� For example, the propagator X*Y=:24 notices that

since Y is at most 9, that X cannot be 1 or 2.
� Therefore X is at least 3. It follows that Y is at most 8.
� The same reasoning can be done with X and Y

reversed.
� So, the propagator updates the computation space:

� S1 : X*Y=:24 X+Y=:10 X=<:Y || X::3#8 Y::3#8

9 Nov 2007 CS2104, Lecture 12 28

Local Deductions II

� Now the propagator X+Y=:10 enters the picture.
� It notices that since X cannot be 2, therefore Y

cannot be 8.
� Similarly, X cannot be 8 either.

� This gives
� S1 : X*Y=:24 X+Y=:10 X=<:Y || X::3#7 Y::3#7

9 Nov 2007 CS2104, Lecture 12 29

Local Deductions III

� Now, the propagator X*Y=:24 can do more deduction.
� Since X is at most 7, therefore Y must be at least 4.
� If Y is at least 4, then X must be at most 6.

� This gives
� S1 : X*Y=:24 X+Y=:10 X=<:Y || X::4#6 Y::4#6

� At this point, none of the propagators sees any
opportunities for adding information.

� We say that the computation space has become
stable.

9 Nov 2007 CS2104, Lecture 12 30

Search I

� How do we continue? We have to make a guess.

� We get two computation spaces: one in which
X=4 and another in which X�4. This gives
� S2 : X*Y=:24 X+Y=:10 X=<:Y || X=4 Y::4#6
� S3 : X*Y=:24 X+Y=:10 X=<:Y || X::5#6 Y::4#6

9 Nov 2007 CS2104, Lecture 12 31

Search II

� The local deductions give the computation space S2:
� S2 : X*Y=:24 X+Y=:10 X=<:Y || X=4 Y=6
� At this point, each of the three propagators notices

that it is completely solved (it can never add any more
information) and therefore removes itself from the
computation space. We say that the propagators are
entailed.

� This gives
� S2 : (empty) || X=4 Y=6

� The result is a solved computation space. It contains
the solution X=4 Y=6.

9 Nov 2007 CS2104, Lecture 12 32

Search III

� Local deductions for S3:
� Propagator X*Y=:24 deduces that X=6 Y=4 is the

only possibility consistent with itself.
� Then propagator X=<:Y sees that there is no

possible solution consistent with itself.

� This causes the space to fail:
� S3 : (failed)
� A failed space has no solution.

� We conclude that the only solution is X=4 Y=6.

9 Nov 2007 CS2104, Lecture 12 33

A Mozart Implementation I

� We define the problem by writing a one
argument procedure whose argument is the
solution.

� Running the procedure sets up the basic
constraints, the propagators, and selects a
distribution strategy.

� The distribution strategy defines the
“guess” that splits the search in two.

9 Nov 2007 CS2104, Lecture 12 34

A Mozart Implementation II

declare

proc {Rectangle ?Sol}

sol(X Y)=Sol

in

X::1#9 Y::1#9

X*Y=:24 X+Y=:10 X=<:Y

{FD.distribute naive Sol}

end

{Browse {SearchAll Rectangle}}

9 Nov 2007 CS2104, Lecture 12 35

A Mozart Implementation III

� The solution is returned as the tuple sol(X Y)

� Basic constraints: X::1#9 and Y::1#9
� Propagators: X*Y=:24, X+Y=:10, and X=<:Y
� The FD.distribute call selects the distribution

strategy.
� The chosen strategy (naive) selects the first

nondetermined variable in Sol, and picks the
leftmost element in the domain as a guess.

9 Nov 2007 CS2104, Lecture 12 36

Summary so far: Computation Space

� Is the fundamental concept used to implement
propagate-and-search, which contains basic
constraints and propagators

� Solving a problem alternates two phases:
� Local deductions (using the propagators).
� Search step (when the space is stable). Two copies of the

space are first made. A basic constraint C is then “guessed”
according to the distribution strategy. The constraint C is then
added to the first copy and ¬C is added to the second copy.
We then continue with each copy. The process is continued
until all spaces are either solved or failed.

� This gives us all solutions to the problem.

9 Nov 2007 CS2104, Lecture 12 37

Constraint Programming in a Nutshell

SEND MORE MONEY

9 Nov 2007 CS2104, Lecture 12 38

Constraint Programming in a Nutshell

SEND + MORE = MONEY

9 Nov 2007 CS2104, Lecture 12 39

SEND + MORE = MONEY

Assign distinct digits to the letters
S, E, N, D, M, O, R, Y
such that

S E N D
+ M O R E

= M O N E Y
holds.

9 Nov 2007 CS2104, Lecture 12 40

SEND + MORE = MONEY

Assign distinct digits to the letters
S, E, N, D, M, O, R, Y
such that

S E N D
+ M O R E

= M O N E Y
holds.

Solution
9 5 6 7

+ 1 0 8 5

= 1 0 6 5 2

9 Nov 2007 CS2104, Lecture 12 41

Modeling

� Formalize the problem as a constraint
problem:

� number of variables: n
� constraints: c1,…,cm � =n

� problem: Find a = (v1,…,vn)� =n such
that a � ci , for all 1 d i d m

9 Nov 2007 CS2104, Lecture 12 42

A Model for MONEY

� number of variables: 8
� constraints:

c1 = {(S,E,N,D,M,O,R,Y)� =8 | 0 d S,…,Y d 9 }

c2 = {(S,E,N,D,M,O,R,Y)� =8 |
1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y}

9 Nov 2007 CS2104, Lecture 12 43

A Model for MONEY (continued)

� more constraints

c3 = {(S,E,N,D,M,O,R,Y)� =8 | S z 0 }

c4 = {(S,E,N,D,M,O,R,Y)� =8 | M z 0 }

c5 = {(S,E,N,D,M,O,R,Y)� =8 | S…Y all different}

9 Nov 2007 CS2104, Lecture 12 44

Solution for MONEY

c1 = {(S,E,N,D,M,O,R,Y)� =8 | 0dS,…,Yd9 }
c2 = {(S,E,N,D,M,O,R,Y)� =8 |

1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E

= 10000*M + 1000*O + 100*N + 10*E + Y}

c3 = {(S,E,N,D,M,O,R,Y)� =8 | S z 0 }

c4 = {(S,E,N,D,M,O,R,Y)� =8 | M z 0 }

c5 = {(S,E,N,D,M,O,R,Y)� =8 | S…Y all different}

� Solution: (9,5,6,7,1,0,8,2)� =8

9 Nov 2007 CS2104, Lecture 12 45

A Mozart Implementation

proc {Money Root}
S E N D M O R Y in
Root=sol(s:S e:E n:N d:D m:M o:O r:R y:Y)
Root ::: 0#9
{FD.distinct Root}
S \=: 0 M \=: 0

1000*S + 100*E + 10*N + D
+ 1000*M + 100*O + 10*R + E
=: 10000*M + 1000*O + 100*N + 10*E + Y
{FD.distribute ff Root}

end

{Browse {SearchAll Money}}

Modeling

Propagation

Branching

Exploration

9 Nov 2007 CS2104, Lecture 12 46

Money Demo

�To display the solutions:

{Browse {SearchAll Money}}

9 Nov 2007 CS2104, Lecture 12 47

Relation to Integer Programming

� More general notion of problem; constraints
can be any relation, not just arithmetic or
even just linear arithmetic constraints

� De-emphasize optimization (optimization as
after-thought)

� Focus on software engineering
� no push-button solver, but glass-box or no-box
� experimentation platforms
� extensive support for “performance debugging”

9 Nov 2007 CS2104, Lecture 12 48

Constraint Programming Systems
� Role: support elements of constraint

programming
� Provide propagation algorithms for constraints

� all different (e.g. wait for fixing)
� summation (e.g. interval consistency)

� Allow choice of branching algorithm (e.g. first-fail)
� Allow choice of exploration algorithm (e.g. depth-first

search)

9 Nov 2007 CS2104, Lecture 12 49

Programming Systems for Finite Domain
Constraint Programming
� Finite domain constraint programming libraries

� PECOS [Puget 1992]
� ILOG Solver [Puget 1993]

� Finite domain constraint programming
languages
� CHIP [Dincbas, Hentenryck, Simonis, Aggoun 1988]
� SICStus Prolog [Haridi, Carlson 1995]
� Oz [Smolka and others 1995]
� CLAIRE [Caseau, Laburthe 1996]
� OPL [van Hentenryck 1998]

9 Nov 2007 CS2104, Lecture 12 50

Issues in Propagation

� Expressivity: What kind of information can
be expressed as propagators?

� Completeness: What behavior can be
expected from propagation?

� Efficiency: How much computational
resources does propagation consume?

9 Nov 2007 CS2104, Lecture 12 51

Summary

� Relational Programming
� Choice and Fail Operations
� Constraint Programming in a Nutshell
� Elements of Constraint Programming
� Constraint Programming in Oz
� Constraint Programming Techniques

9 Nov 2007 CS2104, Lecture 12 52

Last Week of Term for CS2104

� No formal lecture on 16Nov (Fri)

� Instead, TA Cristina will provide consultation
on 16Nov to answer questions at the lecture
venue from 12-2pm.

� Tutorial for week of 12Nov will be handled by
Cristina too.

9 Nov 2007 CS2104, Lecture 12 53

Reading suggestions

� Chapter 9, sections 9.1-9.3 from [van
Roy,Haridi; 2004]

� Exercises 9.8.1-9.8.5 from [van Roy,Haridi;
2004]

� Chapter 12, sections 12.1-12.3 from [van
Roy,Haridi; 2004]

� Exercises 12.6.1-12.6.5 from [van Roy,Haridi;
2004]

