
31 Aug 2007 CS2104, Lecture 3 1

Programming Language Concepts,
CS2104
Lecture 3

Statements, Kernel Language, Abstract Machine

31 Aug 2007 CS2104, Lecture 3 2

Reminder of last lecture

� Programming language definition: syntax, semantics
� CFG, EBNF

� Data structures
� simple: integers, floats, literals
� compound: records, tuples, lists

� Kernel language
� linguistic abstraction
� data types
� variables and partial values
� unification

31 Aug 2007 CS2104, Lecture 3 3

Overview
� Some Oz concepts

� Pattern matching
� Tail recursion
� Lazy evaluation

� Kernel language
� statements and expressions

� Kernel language semantics
� Use operational semantics

� Aid programmer in reasoning and understanding

� The model is a sort of an abstract machine, but leaves out
details about registers and explicit memory address
� Aid implementer to do an efficient execution on a real machine

31 Aug 2007 CS2104, Lecture 3 4

Pattern-Matching on Numbers

fun {Fact N}

case N

of 0 then 1

[] N then N*{Fact (N-1)} end

end

31 Aug 2007 CS2104, Lecture 3 5

Pattern Matching on Structures

fun {Depth T}

case Xs of

leaf(value:_) then 1

[] node(left:L right:R value:_)

then 1+{Max {Depth L} {Depth R}}

end

end

31 Aug 2007 CS2104, Lecture 3 6

Compared to Conditional

fun {SumList Xs}

case Xs

of nil then 0

[] X|Xr then X + {SumList Xr} end
end

fun {SumList Xs}

if {Label Xs}==‘nil’ then 0

elseif {Label Xs}==‘|’ andthen {Width Xs}==2

then Xs.1 +{SumList Xs.2}

end
end

Using only Conditional

31 Aug 2007 CS2104, Lecture 3 7

Linear Recursion

fun {Fact N}

case N

of 0 then 1

[] N then N * {Fact (N-1)} end
end

{Fact 3}
� 3*{Fact 2}
� 3*(2*{Fact 1})
� 3*(2*(1*{Fact 0}))
� 3*(2*(1*1))
� 3*(2*1)
� 3*2
� 6

going down
recursion

return from
recursion

31 Aug 2007 CS2104, Lecture 3 8

Accumulating Parameter

fun {Fact N } {FactT N 1} end

fun {FactT N Acc}

case N

of 0 then Acc

[] N then {FactT (N-1) N*Acc} end
end

Accumulating Parameter

31 Aug 2007 CS2104, Lecture 3 9

Accumulating Parameter

{Fact 3}
� {FactT 3 1}
� {FactT 2 3*1}
� {FactT 2 3})
� {FactT 1 2*3}
� {FactT 1 6}
� {FactT 0 1*6}
� {FactT 0 6}
� 6

going down
recursion and accumulating
result in parameter

Accumulating Parameter = Tail Recursion = Loop!

31 Aug 2007 CS2104, Lecture 3 10

Tail Recursion = Loop

fun {FactT N Acc}

case N

of 0 then Acc

[] N then N=N-1

Acc=N*Acc

{FactT N Acc}

end
end

Last call = Tail call

jump

31 Aug 2007 CS2104, Lecture 3 11

Lazy Evaluation
Infinite list of numbers!

fun lazy {Ints N} N|{Ints N+1} end

{Ints 2}
� 2|{Ints 3}
� 2|(3|{Ints 4})
� 2|(3|(4|{Ints 5}))
� 2|(3|(4|(5|{Ints 6})))
� 2|(3|(4|(5|(6|{Ints 7}))))

:

What if we were to compute : {SumList {Ints 2}} ?

31 Aug 2007 CS2104, Lecture 3 12

Taking first N elements of List
fun {Take L N}
if N<=0 then nil
else case L of

nil then nil
[] X|Xs then X|{Take Xs (N-1)} end end

end

{Take [a b c d] 2}
� a|{Take [b c d] 1}
� a|b|{Take [c d] 0}
� a|b|nil

{Take {Ints 2} 2}
� ?

31 Aug 2007 CS2104, Lecture 3 13

Eager Evaluation

{Take {Ints 2} 2}
� {Take 2|{Ints 3} 2}
� {Take 2|(3|{Ints 4}) 2}
� {Take 2|(3|(4|{Ints 5}))} 2}
� {Take 2|(3|(4|(5|{Ints 6}))) 2}
� {Take 2|(3|(4|(5|(6|{Ints 7})))) 2}

:

Loop as Infinite list
eagerly evaluated!

31 Aug 2007 CS2104, Lecture 3 14

Lazy Evaluation

{Take {Ints 2} 2}
� {Take 2|{Ints 3} 2}
� 2|{Take {Ints 3} 1}
� 2|{Take 3|{Ints 4} 1}
� 2|(3|{Take {Ints 4} 0})
� 2|(3|nil)

Evaluate the lazy argument only as needed

terminates despite infinite list

31 Aug 2007 CS2104, Lecture 3 15

Kernel Concepts

� Single-assignment store
� Environment
� Semantic statement
� Execution state and Computation
� Statements Execution for:

� skip and sequential composition
� variable declaration
� store manipulation
� conditional

31 Aug 2007 CS2104, Lecture 3 16

Procedure Declarations

� Kernel language
¢x² = proc {$ ¢y1² …¢yn²} ¢s² end

is a legal statement
� binds ¢x² to procedure value
� declares (introduces a procedure)

� Familiar syntactic variant
proc {¢x² ¢y1² …¢yn²} ¢s² end

introduces (declares) the procedure ¢x²
� A procedure declaration is a value, whereas

a procedure application is a statement!

31 Aug 2007 CS2104, Lecture 3 17

What Is a Procedure?
� It is a value of the procedure type.

� Java: methods with void as return type
declare

X = proc {$ Y}

{Browse 2*Y}

end

{X 3}

{Browse X}

� But how to return a result (as parameter) anyway?
� Idea: use an unbound variable
� Why: we can supply its value after we have computed it!

$ is the nesting operator

6

<P/1 X>

31 Aug 2007 CS2104, Lecture 3 18

Operations on Procedures

� Three basic operations:
� Defining them (with proc statement)
� Calling them (with { } notation)
� Testing if a value is a procedure

� {IsProcedure P} returns true if P is a procedure,
and false otherwise

declare

X = proc {$ Y}

{Browse 2*Y}

end

{Browse {IsProcedure X}}

31 Aug 2007 CS2104, Lecture 3 19

Towards Computation Model

� Step One: Make the language small
� Transform the language of function on partial

values to a small kernel language

� Kernel language
� procedures no functions
� records no tuple syntax

no list syntax
� local declarations no nested calls

no nested constructions

31 Aug 2007 CS2104, Lecture 3 20

From Function to Procedure

proc {SumP Xs N}
case Xs
of nil then N=0
[] X|Xr then N=X+{Sum Xr}
end

end

fun {Sum Xs}

case Xs

of nil then 0

[] X|Xr then X+{Sum Xr}

end

end

� Introduce an output parameter for procedure

31 Aug 2007 CS2104, Lecture 3 21

Why we need local statements?

proc {SumP Xs N}

case Xs

of nil then N=0

[] X|Xr then
local M in {SumP Xr M} N=X+M end

end
end

� Local declaration of variables supported.
� Needed to allow kernel language to be based

entirely on procedures

31 Aug 2007 CS2104, Lecture 3 22

How N was actually transmitted?

� Having the call {SumP [1 2 3] C}, the
identifier Xs is bound to [1 2 3] and C is
unbound.

� At the callee of SumP, whenever N is being
bound, so will be C.

� This way of passing parameters is called call
by reference.

� Procedures output are passed as references
to unbound variables, which are bound inside
the procedure.

31 Aug 2007 CS2104, Lecture 3 23

Local Declarations

local X in … end

� Introduces the variable identifier X
� visible between in and end

� called scope of the variable/declaration

� Creates a new store variable
� Links environment identifier to store variable

31 Aug 2007 CS2104, Lecture 3 24

Abbreviations for Declarations

� Kernel language
� just one variable introduced at a time
� no assignment when first declared

� Oz language syntax supports:
� several variables at a time
� variables can be also assigned (initialized) when

introduced

31 Aug 2007 CS2104, Lecture 3 25

Transforming Declarations Multiple
Variables

local X Y in

¢statement²
end

local X in
local Y in

¢statement²
end

end

Ö

31 Aug 2007 CS2104, Lecture 3 26

Transforming away Declarations’
Initialization

local

X=¢expression²
in

¢statement²
end

local X in

X=¢expression²
¢statement²

end

Ö

31 Aug 2007 CS2104, Lecture 3 27

Transforming Expressions

� Replace function calls by procedure calls
� Use local declaration for intermediate values
� Order of replacements:

� left to right
� innermost first
� it is different for record construction: outermost first
� Left associativity: 1+2+3 means ((1+2)+3)
� Right associativity: a|b|X means (a|(b|X)), so

build the first ’|’, then the second ’|’

31 Aug 2007 CS2104, Lecture 3 28

Function Call to Procedure Call

X={F Y} {F Y X}Ö

31 Aug 2007 CS2104, Lecture 3 29

Replacing Nested Calls

{P {F X Y} Z}

local U1 in

{F X Y U1}

{P U1 Z}

end

Ö

31 Aug 2007 CS2104, Lecture 3 30

Replacing Nested Calls

{P {F {G X} Y} Z}

local U2 in

local U1 in

{G X U1}

{F U1 Y U2}

end

{P U2 Z}

end

Ö

31 Aug 2007 CS2104, Lecture 3 31

Replacing Conditionals

if X>Y then

…

else

…

end

local B in

B = (X>Y)

if B then

…

else

…

end

end

Ö

31 Aug 2007 CS2104, Lecture 3 32

Expressions to Statements

X = if B then

…

else

…

end

if B then

X = …

else

X = …

end

Ö

31 Aug 2007 CS2104, Lecture 3 33

Functions to Procedures: Length (0)

fun {Length Xs}

case Xs

of nil then 0

[] X|Xr then 1+{Length Xr}

end

end

31 Aug 2007 CS2104, Lecture 3 34

Functions to Procedures: Length (1)

proc {Length Xs N}

N=case Xs

of nil then 0

[] X|Xr then 1+{Length Xr}

end

end

� Make it a procedure

31 Aug 2007 CS2104, Lecture 3 35

Functions to Procedures: Length (2)

proc {Length Xs N}

case Xs

of nil then N=0

[] X|Xr then N=1+{Length Xr}

end

end

� Expressions to statements

31 Aug 2007 CS2104, Lecture 3 36

Functions to Procedures: Length (3)
proc {Length Xs N}

case Xs
of nil then N=0
[] X|Xr then

local U in
{Length Xr U}
N=1+U

end
end

end

� Replace function call by its corresponding proc call.

31 Aug 2007 CS2104, Lecture 3 37

Functions to Procedures: Length (4)
proc {Length Xs N}

case Xs

of nil then N=0

[] X|Xr then

local U in

{Length Xr U}

{Number.’+’ 1 U N}

end

end

end

� Replace operation (+, dot-access, <, >, …): procedure!

31 Aug 2007 CS2104, Lecture 3 38

Kernel Language Statement Syntax

¢s² ::=skip empty statement
| ¢x² = ¢y² variable-variable binding
| ¢x² = ¢v² variable-value binding
| ¢s1² ¢s2² sequential composition
| local ¢x² in ¢s1² end declaration
| if ¢x² then ¢s1² else ¢s2² end conditional
| { ¢x² ¢y1² … ¢yn² } procedure application
| case ¢x² of ¢pattern² then ¢s1² else ¢s2² end pattern matching

¢v² ::= ... value expression

¢pattern² ::= ...

¢s² denotes a statement

31 Aug 2007 CS2104, Lecture 3 39

Abstract Machine

� Environment maps variable identifiers to store entities
� Semantic statement is a pair of:

� statement
� environment

� Execution state is a pair of:
� stack of semantic statements
� single assignment store

� Computation is a sequence of execution states
� An abstract machine performs a computation

31 Aug 2007 CS2104, Lecture 3 40

Single Assignment Store

� Single assignment store V
� set of store variables
� partitioned into

� sets of variables that are equivalent but unbound
� variables bound to a value (number, record or procedure)

� Example store {x1, x2=x3, x4=a|x2}
� x1 unbound
� x2, x3 equal and unbound
� x4 bound to partial value a|x2

31 Aug 2007 CS2104, Lecture 3 41

Environment

� Environment E
� maps variable identifiers to entities in store V
� written as set of pairs X � x

� identifier X
� store variable x

� Example of environment: { X � x, Y � y }
� maps identifier X to store variable x
� maps identifier Y to store variable y

31 Aug 2007 CS2104, Lecture 3 42

Environment and Store

� Given: environment E, store V
� Looking up value for identifier X:

� find store variable in environment using E(X)
� take value from V for E(X)

� Example:
V={x1, x2=x3, x4=a|x2} E = { X � x1, Y � x4 }

� E(X) = x1 where no information in V on x1

� E(Y) = x4 where V binds x4 to a|x2

31 Aug 2007 CS2104, Lecture 3 43

Calculating with Environments

� Program execution looks up values
� assume store V
� given identifier ¢x²
� E(¢x²) is the value of ¢x² in store V

� Program execution modifies environments
� for example: declaration
� add mappings for new identifiers
� overwrite existing mappings
� restrict mappings on sets of identifiers

31 Aug 2007 CS2104, Lecture 3 44

Environment Adjunction

� Given: Environment E
then E + {¢x²1�x1, …, ¢x²n�xn}
is a new environment E’ with mappings added:

� always take store entity from new mappings
� might overwrite (or shadow) old mappings

31 Aug 2007 CS2104, Lecture 3 45

Environment Projection

� Given: Environment E
E | {¢x²1, …, ¢x²n}

is a new environment E’ where only mappings
for {¢x²1, … , ¢x²n} are retained from E

31 Aug 2007 CS2104, Lecture 3 46

Adjunction Example

� E0 = {¢Y² � 1 }

� E1 = E0 + {¢X² � 2 }
� corresponds to {¢X² � 2, ¢Y² � 1 }
� E1(¢X²) = 2

� E2 = E1 + {¢X² � 3 }
� corresponds to {¢X² � 3, ¢Y² � 1 }
� E2(¢X²) = 3

31 Aug 2007 CS2104, Lecture 3 47

Why Adjunction?

local X in

X = 2

local X in

X = 3

{… Y}

end

…

end

E0

E0

E2 E1

31 Aug 2007 CS2104, Lecture 3 48

Semantic Statements

� Semantic statement (¢s², E)
� pair of (statement, environment)

� To actually execute statement:
� environment to map identifiers

� modified with execution of each statement
� each statement has its own environment

� store to find values
� all statements modify same store
� single store

31 Aug 2007 CS2104, Lecture 3 49

Stacks of Statements

� Execution maintains stack of semantic
statements ST = [(¢s²1, E1), …, (¢s²n, En)]
� always topmost statement (¢s²1, E1) executes first

� <s> is statement
� E denotes the environment mapping

� rest of stack: remaining work to be done

� Also called: semantic stack

31 Aug 2007 CS2104, Lecture 3 50

Execution State

� Execution state (ST, V)
� pair of (semantic stack, store)

� Computation
(ST1, V1) Ö (ST2, V2) Ö (ST3, V3) Ö …

� sequence of execution states

31 Aug 2007 CS2104, Lecture 3 51

Program Execution

� Initial execution state
([(¢s²,�)] , �)

� empty store �
� stack with semantic statement [(¢s²,�)]

� single statement ¢s², empty environment �
� At each execution step

� pop topmost element of semantic stack
� execute according to statement

� If semantic stack is empty, then execution stops

31 Aug 2007 CS2104, Lecture 3 52

Semantic Stack States

� Semantic stack can be in following states
� terminated stack is empty
� runnable can do execution step
� suspended stack not empty, no execution

step possible

� Statements
� non-suspending can always execute
� suspending need values from store

dataflow behavior

31 Aug 2007 CS2104, Lecture 3 53

Summary up to now
� Single assignment store V
� Environments E

� adjunction, projection E + {…} E | {…}

� Semantic statements (¢s², E)
� Semantic stacks [(¢s², E) …]
� Execution state (ST, V)
� Computation = sequence of execution states
� Program execution

� runnable, terminated, suspended
� Statements

� suspending, non-suspending

31 Aug 2007 CS2104, Lecture 3 54

Statement Execution

� Simple statements
� skip and sequential composition
� variable declaration
� store manipulation
� Conditional (if statement)

� Computing with procedures (later lecture)
� lexical scoping
� closures
� procedures as values
� procedure call

31 Aug 2007 CS2104, Lecture 3 55

Simple Statements

¢s² ::= skip empty statement
| ¢x² = ¢y² variable-variable binding
| ¢x² = ¢v² variable-value binding
| ¢s1² ¢s2² sequential composition
| local ¢x² in ¢s1² end declaration
| if ¢x² then ¢s1² else ¢s2² end conditional

¢v² ::= ... value expression
(no procedures here)

¢s² denotes a statement

31 Aug 2007 CS2104, Lecture 3 56

Executing skip

� Execution of semantic statement
(skip, E)

� Do nothing
� means: continue with next statement
� non-suspending statement

31 Aug 2007 CS2104, Lecture 3 57

Executing skip

� No effect on store V
� Non-suspending statement

(skip, E)

ST
+ V

ST
+ V

31 Aug 2007 CS2104, Lecture 3 58

Executing skip

� Remember: topmost statement is always
popped!

(skip, E)

ST
+ V

ST
+ V

31 Aug 2007 CS2104, Lecture 3 59

Executing Sequential Composition

� Semantic statement is
(¢s²1 ¢s²2, E)

� Push in following order
� ¢s²2 executes after
� ¢s²1 executes next

� Statement is non-suspending

31 Aug 2007 CS2104, Lecture 3 60

Sequential Composition

� Decompose statement sequences
� environment is given to both statements

(¢s²1 ¢s²2, E)

ST
+ V

(¢s²2, E)

ST
+ V

(¢s²1, E)

31 Aug 2007 CS2104, Lecture 3 61

Executing local

� Semantic statement is
(local ¢x² in ¢s² end, E)

� Execute as follows:
� create new variable y in store
� create new environment E’ = E + {¢x²� y}
� push (¢s², E’)

� Statement is non-suspending

31 Aug 2007 CS2104, Lecture 3 62

Executing local

� With E’ = E + {¢x²� y}

(local ¢x² in
¢s² end, E)

ST
+ V

ST
+

V

(¢s², E’)

ST
y

31 Aug 2007 CS2104, Lecture 3 63

Variable-Variable Equality

� Semantic statement is
(¢x² = ¢y², E)

� Execute as follows
� bind E(¢x²) and E(¢y²) in store

� Statement is non-suspending

31 Aug 2007 CS2104, Lecture 3 64

Executing Variable-Variable Equality

� V’ is obtained from V by binding E(¢x²) and
E(¢y²) in store

(¢x² = ¢y², E)

ST
+ V

ST
+ V’

31 Aug 2007 CS2104, Lecture 3 65

Variable-Value Equality

� Semantic statement is
(¢x² = ¢v², E)

where ¢v² is a number or a record (procedures will
be discussed later)

� Execute as follows
� create a variable y in store and let y refers to value ¢v²
� any identifier ¢z² from ¢v² is replaced by E(¢z²)
� bind E(¢x²) and y in store

� Statement is non-suspending

31 Aug 2007 CS2104, Lecture 3 66

Executing Variable-Value Equality

� y refers to value ¢v²
� Store V is modified into V’ such that:

� any identifier ¢z² from ¢v² is replaced by E(¢z²)
� bind E(¢x²) and y in store V

(¢x² = ¢v², E)

ST
+ V

ST
+

V’
y

31 Aug 2007 CS2104, Lecture 3 67

Suspending Statements

� All statements so far can always execute
� non-suspending (or immediate)

� Conditional?
� requires condition ¢x² to be bound variable
� activation condition: ¢x² is bound (determined)

31 Aug 2007 CS2104, Lecture 3 68

Executing if

� Semantic statement is
(if ¢x² then ¢s²1 else ¢s²2 end, E)

� If the activation condition “bound(¢x²)” is true
� if E(¢x²) bound to true push ¢s²1

� if E(¢x²) bound to false push ¢s²2
� otherwise, raise error

� Otherwise, suspend the if statement…

31 Aug 2007 CS2104, Lecture 3 69

Executing if

(if ¢x² then ¢s²1
else ¢s²2 end, E)

ST

+ V + V
(¢s²1, E)

ST

� If the activation condition “bound(¢x²)” is true
� if E(¢x²) bound to true

31 Aug 2007 CS2104, Lecture 3 70

Executing if

(if ¢x² then ¢s²1
else ¢s²2 end, E)

ST

+ V + V
(¢s²2, E)

ST

� If the activation condition “bound(¢x²)” is true
� if E(¢ x²) bound to false

31 Aug 2007 CS2104, Lecture 3 71

An Example

local X in

local B in

B=true

if B then X=1 else skip end

end

end

� We can reason that X will be bound to 1

31 Aug 2007 CS2104, Lecture 3 72

Example: Initial State

([(local X in
local B in

B=true

if B then X=1 else skip end

end

end, �)],
�)

� Start with empty store and empty environment

31 Aug 2007 CS2104, Lecture 3 73

Example: local

([(local B in
B=true

if B then X=1 else skip end

end,

{X � x})],
{x})

� Create new store variable x
� Continue with new environment

31 Aug 2007 CS2104, Lecture 3 74

Example: local

([(B=true

if B then X=1 else skip end

,

{B � b, X � x})],
{b,x})

� Create new store variable b
� Continue with new environment

31 Aug 2007 CS2104, Lecture 3 75

Example: Sequential Composition

([(B=true, {B � b, X � x}),
(if B then X=1

else skip end, {B � b, X � x})],
{b,x})

� Decompose to two statements
� Stack has now two semantic statements

31 Aug 2007 CS2104, Lecture 3 76

Example: Variable-Value Assignment

([(if B then X=1

else skip end, {B � b, X � x})],
{b=true, x})

� Environment maps B to b
� Bind b to true

31 Aug 2007 CS2104, Lecture 3 77

Example: if

([(X=1, {B � b, X � x})],
{b=true, x})

� Environment maps B to b
� Bind b to true
� Because the activation condition “bound(¢x²)” is
true, continue with then branch of if statement

31 Aug 2007 CS2104, Lecture 3 78

Example: Variable-Value Assignment

([],

{b=true, x=1})

� Environment maps X to x
� Binds x to 1
� Computation terminates as stack is empty

31 Aug 2007 CS2104, Lecture 3 79

Summary up to now

� Semantic statement execute by
� popping itself always
� creating environment local

� manipulating store local, =

� pushing new statements local, if

sequential composition

� Semantic statement can suspend
� activation condition (if statement)
� read store

31 Aug 2007 CS2104, Lecture 3 80

Pattern Matching

� Semantic statement is
(case ¢x²
of ¢lit²(¢feat²1:¢y²1 … ¢feat²n:¢y²n) then ¢s²1
else ¢s²2 end, E)

� It is a suspending statement
� Activation condition is: “bound(¢x²)”
� If activation condition is false, then suspend!

31 Aug 2007 CS2104, Lecture 3 81

Pattern Matching
� Semantic statement is

(case ¢x²
of ¢lit²(¢feat²1:¢y²1 … ¢feat²n:¢y²n) then ¢s²1
else ¢s²2 end, E)

� If E(¢x²) matches the pattern, that is,
� label of E(¢x²) is ¢lit² and
� its arity is [¢feat²1… ¢feat²n]),

� then push
(¢s²1,

E + {¢y²1 � E(¢x²). ¢feat²1 ,
… ,
¢y²n � E(¢x²). ¢feat²n })

31 Aug 2007 CS2104, Lecture 3 82

Pattern Matching

� Semantic statement is
(case ¢x²
of ¢lit²(¢feat²1:¢y²1 … ¢feat²n:¢y²n) then ¢s²1
else ¢s²2 end, E)

� If E(¢x²) does not match pattern, push
(¢s²2, E)

31 Aug 2007 CS2104, Lecture 3 83

Pattern Matching

� Semantic statement is
(case ¢x²
of ¢lit²(¢feat²1:¢y²1 … ¢feat²n:¢y²n) then ¢s²1
else ¢s²2 end, E)

� It does not introduce new variables in the store
� Identifiers ¢y²1 … ¢y²n are visible only in ¢s²1

31 Aug 2007 CS2104, Lecture 3 84

Executing case

(case ¢x² of ¢lit²(
¢feat²1:¢y²1 … ¢feat²n:¢y²n)

then ¢s²1 else ¢s²2 end, E)

ST

+ V + V

� If the activation condition “bound(¢x²)” is true
� if E(¢x²) matches the pattern

(¢s²1, E +
{¢y²1 � E(¢x²). ¢feat²1,

…,
¢y²n � E(¢x²). ¢feat²n })

ST

31 Aug 2007 CS2104, Lecture 3 85

Executing case

(case ¢x² of ¢lit²(
¢feat²1:¢y²1 … ¢feat²n:¢y²n)

then ¢s²1 else ¢s²2 end, E)

ST

+ V + V

� If the activation condition “bound(¢x²)” is true
� if E(¢x²) does not match the pattern

(¢s²2, E)

ST

31 Aug 2007 CS2104, Lecture 3 86

Example: case Statement

([(case X of

f(X1 X2) then Y = g(X2 X1)

else Y = c
end,

{X �v1, Y �v2})], % Env
{v1=f(v3 v4), v2, v3=a, v4=b} % Store

)

� We declared X, Y, X1, X2 as local identifiers and
X=f(v3 v4), X1=a and X2=b

� What is the value of Y after executing case?

31 Aug 2007 CS2104, Lecture 3 87

Example: case Statement

([(Y = g(X2 X1),
{X �v1, Y �v2, X1 �v3, X2 �v4})
],

{v1=f(v3 v4), v2, v3=a, v4=b}
)

� The activation condition “bound(¢x²)” is true
� Remember that X1=a, X2=b

31 Aug 2007 CS2104, Lecture 3 88

Example: case Statement

([],

{v1=f(v3 v4),
v2=g(v4 v3),v3=a,v4=b}

)

� Remember Y refers to v2, so
Y = g(b a)

31 Aug 2007 CS2104, Lecture 3 89

Summary

� Kernel language
� linguistic abstraction
� data types
� variables and partial values
� statements and expressions

� Computing with procedures (next lecture)
� lexical scoping
� closures
� procedures as values
� procedure call

31 Aug 2007 CS2104, Lecture 3 90

Reading Suggestions

� from [van Roy,Haridi; 2004]
� Chapter 2, Sections 2.1.1-2.3.5, 2.8
� Appendices B, C, D
� Exercises 2.9.1-2.9.3, 2.9.13

