Programming Language Concepts, CS2104 Lecture 3

Statements, Kernel Language, Abstract Machine

Reminder of last lecture

- Programming language definition: syntax, semantics
- CFG, EBNF
- Data structures
- simple: integers, floats, literals
- compound: records, tuples, lists
- Kernel language
- linguistic abstraction
- data types
- variables and partial values
- unification

Overview

- Some Oz concepts
- Pattern matching
- Tail recursion
- Lazy evaluation
- Kernel language
- statements and expressions
- Kernel language semantics
- Use operational semantics
- Aid programmer in reasoning and understanding
- The model is a sort of an abstract machine, but leaves out details about registers and explicit memory address
- Aid implementer to do an efficient execution on a real machine

Pattern-Matching on Numbers

fun $\{$ Fact $N\}$
case N
of 0 then 1
[] N then $N^{*}\{$ Fact $(N-1)\}$ end
end

Pattern Matching on Structures

```
fun \(\{\) Depth \(T\}\)
    case Xs of
    leaf(value:_) then 1
    [] node(left:L right:R value:_)
        then \(1+\{\operatorname{Max}\{D e p t h ~ L\} ~\{D e p t h ~ R\}\}\)
    end
end
```


Compared to Conditional

```
fun {SumList Xs}
    case Xs
    of nil then 0
    [] X|Xr then X + {SumList Xr} end
end
```


Using only Conditional

```
fun {SumList Xs}
```

 if \(\{\) Label Xs\(\}==\) 'nil' then 0
 elseif \(\{\) Label Xs\(\}=={ }^{\prime} \mid\) ' andthen \(\{\) Width Xs\(\}==2\)
 then Xs. 1 +\{SumList Xs. 2\(\}\)
 end
 end

Linear Recursion

fun $\{$ Fact N$\}$
case N
of 0 then 1
[] N then N * $\{$ Fact $(N-1)\}$ end
end

Accumulating Parameter

fun $\{$ Fact N \} $\{$ Fact N 1$\}$ end

Accumulating Parameter

```
{Fact 3}
# {FactT 3 1}
=>{FactT 2 3*1}
=> {FactT 2 3})
=> {FactT 1 2*3}
=> {FactT 1 6}
=>{FactT O 1*6}
=> {FactT 0 6}
=>6
```

going down
recursion and accumulating result in parameter

Accumulating Parameter $=$ Tail Recursion $=$ Loop!

Tail Recursion = Loop

fun $\{$ Fact T N Acc $\}$ case N
of 0 then Acc
[] N then $\mathrm{N}=\mathrm{N}-1$ $\mathrm{Acc}=\mathrm{N} *$ Acc \{FactT N ACCt
end
end
Last call = Tail call

Lazy Evaluation

Infinite list of numbers!

```
fun lazy {Ints N} N|{Ints N+1} end
    {Ints 2}
# 2|{Ints 3}
# 2|(3|{Ints 4})
=>2|(3|(4|{Ints 5}))
=>2|(3|(4|(5|{Ints 6})))
=>2|(3|(4|(5|(6|{Ints 7}))))
```

What if we were to compute : \{SumList \{Ints 2\}\}?

Taking first N elements of List

```
fun {Take L N}
    if N<=0 then nil
    else case L of
        nil then nil
            [] X|Xs then X|{Take Xs (N-1)} end end
end
{Take [a b c d] 2}
=> a|{Take [b c d] 1}
=>a|b|{Take [c d] 0}
=> a|b|nil
{Take {Ints 2} 2}
# ?
```


Eager Evaluation

```
{Take {Ints 2} 2}
=> {Take 2|{Ints 3} 2}
=>{Take 2|(3|{Ints 4}) 2}
=>{Take 2|(3|(4|{Ints 5}))} 2}
=> {Take 2|(3|(4|(5|{Ints 6}))) 2}
=> {Take 2|(3|(4|(5|(6|{Ints 7})))) 2}
:
```


Lazy Evaluation

Evaluate the lazy argument only as needed

```
{Take {Ints 2} 2}
=> {Take 2|{Ints 3} 2}
=>2|{Take {Ints 3} 1}
# 2|{Take 3|{Ints 4} 1}
=>2|(3|{Take {Ints 4} 0})
=>2|(3|nil)
```

terminates despite infinite list

Kernel Concepts

- Single-assignment store
- Environment
- Semantic statement
- Execution state and Computation
- Statements Execution for:
- skip and sequential composition
- variable declaration
- store manipulation
- conditional

Procedure Declarations

- Kernel language

$$
\langle\mathbf{x}\rangle=\operatorname{proc}\left\{\$\left\langle y_{1}\right\rangle \ldots\left\langle y_{\mathrm{n}}\right\rangle\right\}\langle\boldsymbol{s}\rangle \text { end }
$$

is a legal statement

- binds $\langle x\rangle$ to procedure value
- declares (introduces a procedure)
- Familiar syntactic variant

$$
\operatorname{proc}\left\{\langle x\rangle\left\langle y_{1}\right\rangle \ldots\left\langle y_{n}\right\rangle\right\}\langle s\rangle \text { end }
$$

introduces (declares) the procedure $\langle x\rangle$

- A procedure declaration is a value, whereas a procedure application is a statement!

What Is a Procedure?

- It is a value of the procedure type.
- Java: methods with void as return type

declare

$\mathrm{X}=\operatorname{proc}\{\$ \mathrm{Y}\} \quad \longrightarrow$ is the nesting operator
\{Browse 2*Y\}
end
$\{\mathrm{X} 3\} \longrightarrow 6$
$\{$ Browse X$\} \longrightarrow<\mathrm{P} / 1 \mathrm{X}>$

- But how to return a result (as parameter) anyway?
- Idea: use an unbound variable
- Why: we can supply its value after we have computed it!

Operations on Procedures

- Three basic operations:
- Defining them (with proc statement)
- Calling them (with \{ \} notation)
- Testing if a value is a procedure
- \{IsProcedure P \} returns true if P is a procedure, and false otherwise

```
declare
```

$\mathrm{X}=\operatorname{proc}\{\$ \mathrm{Y}\}$
\{Browse 2*Y\}
end
\{Browse \{IsProcedure X\}\}

Towards Computation Model

- Step One: Make the language small
- Transform the language of function on partial values to a small kernel language
- Kernel language
- procedures
- records
no functions
no tuple syntax
no list syntax
- local declarations
no nested calls
no nested constructions

From Function to Procedure

```
fun {Sum Xs}
    case Xs
    of nil then 0
    [] X|Xr then X+{Sum Xr}
    end
end
```

- Introduce an output parameter for procedure
proc \{sumP Xs \mathbf{N} \}
case Xs
of nil then $\mathbf{N}=0$
[] X|Xr then $\mathbf{N}=\mathrm{X}+\{$ Sum Xr $\}$
end
end

Why we need local statements?

```
proc {SumP Xs N}
    case Xs
    of nil then N=0
    [] X|Xr then
    local M in {SumP Xr M} N=X+M end
    end
end
```

- Local declaration of variables supported.
- Needed to allow kernel language to be based entirely on procedures

How N was actually transmitted?

- Having the call \{SumP $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ C\}, the identifier xs is bound to $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$ and c is unbound.
- At the callee of Sump, whenever N is being bound, so will be c.
- This way of passing parameters is called call by reference.
- Procedures output are passed as references to unbound variables, which are bound inside the procedure.

Local Declarations

local X in ... end

- Introduces the variable identifier x
- visible between in and end
- called scope of the variable/declaration
- Creates a new store variable
- Links environment identifier to store variable

Abbreviations for Declarations

- Kernel language
- just one variable introduced at a time
- no assignment when first declared
- Oz language syntax supports:
- several variables at a time
- variables can be also assigned (initialized) when introduced

Transforming Declarations Multiple Variables

Transforming away Declarations＇ Initialization

local

X＝〈expression〉
in
〈statement＞
end
local X in
X＝〈expression〉
〈statement〉
end

Transforming Expressions

- Replace function calls by procedure calls
- Use local declaration for intermediate values
- Order of replacements:
- left to right
- innermost first
- it is different for record construction: outermost first
- Left associativity: $1+2+3$ means $((1+2)+3)$
- Right associativity: a|b|x means (a| (b|x)), so build the first '।', then the second '।'

Function Call to Procedure Call

$$
X=\left\{\begin{array}{ll}
F & Y
\end{array}\right\}
$$

Replacing Nested Calls

\author{

local U1 in
 $\{\mathrm{P}\{\mathrm{F} \mathrm{X} \mathrm{Y}\} \mathrm{Z}\}$

 \quad| $\{F X Y U 1\}$ |
| :--- |
| $\{P \mathrm{UI} \mathrm{Z}$ |

end
}

Replacing Nested Calls

local U2 in
local U1 in
\{G X U1 \}
\{F U1 Y U2\}
end
$\{\mathrm{P}$ U2 Z$\}$
end

Replacing Conditionals

	local B in
if $X>Y$ then	$B=(X>Y)$
...	if B then
else	- ...
...	else
end	\ldots
	end
	end

Expressions to Statements

$$
\begin{gathered}
X=\text { if } B \text { then } \\
\ldots \\
\text { else } \\
\ldots \\
\text { end }
\end{gathered}
$$

Functions to Procedures: Length (0)

```
fun {Length Xs}
    case Xs
    of nil then 0
    [] X|Xr then 1+{Length Xr}
    end
end
```


Functions to Procedures: Length (1)

```
proc {Length Xs N}
    N=case Xs
    of nil then 0
    [] X|Xr then 1+{Length Xr}
    end
end
```

- Make it a procedure

Functions to Procedures: Length (2)

proc \{Length Xs N\}
case Xs
of nil then $N=0$
[] X|Xr then $N=1+\{$ Length $X r\}$
end
end

- Expressions to statements

Functions to Procedures: Length (3)

```
proc {Length Xs N}
    case Xs
    of nil then N=0
    [] X|Xr then
        local U in
            {Length Xr U}
            N=1+U
            end
    end
end
```

- Replace function call by its corresponding proc call.

Functions to Procedures: Length (4)

```
proc {Length Xs N}
    case Xs
    of nil then N=0
    [] X|Xr then
        local U in
        {Length Xr U}
        {Number.' +' 1 U N }
        end
    end
end
```

- Replace operation (+, dot-access, <, >, ...): procedure!

Kernel Language Statement Syntax

〈s denotes a statement
$\langle\mathrm{s}\rangle$: $=$ =skip
$\langle x\rangle=\langle y\rangle$
$\langle\mathrm{x}\rangle=\langle\mathrm{v}\rangle$ $\left\langle\mathrm{s}_{1}\right\rangle\left\langle\mathrm{s}_{2}\right\rangle$ local $\langle x\rangle$ in $\left\langle\mathbf{s}_{\mathbf{1}}\right\rangle$ end if $\langle\mathrm{x}\rangle$ then $\left\langle\mathrm{s}_{1}\right\rangle$ else $\left\langle\mathrm{s}_{2}\right\rangle$ end $\left\{\langle x\rangle\left\langle y_{1}\right\rangle \ldots\left\langle y_{n}\right\rangle\right\}$
| case $\langle\mathrm{x}\rangle$ of \langle pattern \rangle then $\left\langle\mathrm{s}_{1}\right\rangle$ else $\left\langle\mathrm{s}_{2}\right\rangle$ end
$\langle\mathrm{v}\rangle::=\ldots$
value expression
〈pattern> ::= ...

Abstract Machine

- Environment maps variable identifiers to store entities
- Semantic statement is a pair of:
- statement
- environment
- Execution state is a pair of:
- stack of semantic statements
- single assignment store
- Computation is a sequence of execution states
- An abstract machine performs a computation

Single Assignment Store

- Single assignment store
- set of store variables
- partitioned into
- sets of variables that are equivalent but unbound
- variables bound to a value (number, record or procedure)
- Example store $\quad\left\{x_{1}, x_{2}=x_{3}, x_{4}=\mathrm{a} \mid x_{2}\right\}$
- x_{1} unbound
- x_{2}, x_{3} equal and unbound
- $x_{4} \quad$ bound to partial value $\mathrm{a} \mid x_{2}$

Environment

- Environment E
- maps variable identifiers to entities in store σ
- written as set of pairs $\quad X \rightarrow X$
- identifier X
- store variable x
- Example of environment: $\{\mathrm{X} \rightarrow x, \mathrm{Y} \rightarrow y\}$
\square maps identifier X to store variable x
- maps identifier Y to store variable y

Environment and Store

- Given: environment E, store σ
- Looking up value for identifier X:
- find store variable in environment using $E(X)$
- take value from σ for $E(X)$
- Example:

$$
\sigma=\left\{x_{1}, x_{2}=x_{3}, x_{4}=\mathrm{a} \mid x_{2}\right\} \quad \mathrm{E}=\left\{\mathrm{X} \rightarrow x_{1}, \mathrm{Y} \rightarrow x_{4}\right\}
$$

- $\mathrm{E}(\mathrm{X})=x_{1} \quad$ where no information in σ on x_{1}
- $\mathrm{E}(\mathrm{Y})=x_{4} \quad$ where σ binds x_{4} to $\mathrm{a} \mid x_{2}$

Calculating with Environments

- Program execution looks up values
- assume store σ
- given identifier $\langle x\rangle$
- $E(\langle x\rangle)$ is the value of $\langle x\rangle$ in store σ
- Program execution modifies environments
- for example: declaration
- add mappings for new identifiers
- overwrite existing mappings
- restrict mappings on sets of identifiers

Environment Adjunction

- Given: Environment E
then $\quad E+\left\{\langle x\rangle_{1} \rightarrow x_{1}, \ldots,\langle\mathrm{x}\rangle_{n} \rightarrow x_{n}\right\}$
is a new environment E with mappings added:
- always take store entity from new mappings
- might overwrite (or shadow) old mappings

Environment Projection

- Given: Environment E

$$
E \mid\left\{\langle\mathrm{x}\rangle_{1}, \ldots,\langle\mathrm{x}\rangle_{n}\right\}
$$

is a new environment E where only mappings for $\left\{\langle x\rangle_{1}, \ldots,\langle x\rangle_{n}\right\}$ are retained from E

Adjunction Example

- $E_{0}=\{\langle\mathrm{Y}\rangle \rightarrow 1\}$
- $E_{1}=E_{0}+\{\langle\mathrm{X}\rangle \rightarrow 2\}$
- corresponds to $\{\langle\mathrm{X}\rangle \rightarrow 2,\langle\mathrm{Y}\rangle \rightarrow 1\}$
- $E_{1}(\langle x\rangle)=2$
- $E_{2}=E_{1}+\{\langle\mathrm{X}\rangle \rightarrow 3\}$
- corresponds to $\{\langle X\rangle \rightarrow 3,\langle Y\rangle \rightarrow 1\}$
- $E_{2}(\langle X\rangle)=3$

Why Adjunction?

Semantic Statements

- Semantic statement

($\langle\mathbf{s}\rangle, E)$

a pair of (statement, environment)

- To actually execute statement:
- environment to map identifiers
- modified with execution of each statement
- each statement has its own environment
- store to find values
- all statements modify same store
- single store

Stacks of Statements

- Execution maintains stack of semantic statements $\quad S T=\left[\left(\left\langle\langle \rangle_{1}, E_{1}\right), \ldots,,\left\langle\langle \rangle_{n}, E_{n}\right)\right]\right.$
- always topmost statement $\left(\langle\mathrm{s}\rangle_{1}, E_{1}\right)$ executes first
- <s> is statement
- E denotes the environment mapping
- rest of stack: remaining work to be done
- Also called: semantic stack

Execution State

- Execution state
(ST, σ)
- pair of (semantic stack, store)

Computation

$$
\left(S T_{1}, \sigma_{1}\right) \Rightarrow\left(S T_{2}, \sigma_{2}\right) \Rightarrow\left(S T_{3}, \sigma_{3}\right) \Rightarrow \ldots
$$

- sequence of execution states

Program Execution

- Initial execution state

$$
([(\langle\mathbf{s}\rangle, \varnothing)], \varnothing)
$$

- empty store
- stack with semantic statement [(〈s $\rangle, \varnothing)]$
- single statement $\langle\mathrm{s}\rangle$, empty environment \varnothing
- At each execution step
- pop topmost element of semantic stack
- execute according to statement
- If semantic stack is empty, then execution stops

Semantic Stack States

- Semantic stack can be in following states
- terminated
- runnable
- suspended
stack is empty
can do execution step
stack not empty, no execution
step possible
- Statements
- non-suspending
- suspending
can always execute
need values from store dataflow behavior

Summary up to now

- Single assignment store
- Environments
- adjunction, projection
- Semantic statements
- Semantic stacks
- Execution state
σ
E
$E+\left.\{\ldots\} \quad E\right|_{\{\ldots\}}$
(〈s), E)
[(/s>, E) ...]
(ST, σ)
- Computation = sequence of execution states
- Program execution
- runnable, terminated, suspended
- Statements
- suspending, non-suspending

Statement Execution

- Simple statements
- skip and sequential composition
- variable declaration
- store manipulation
- Conditional (if statement)
- Computing with procedures (later lecture)
- lexical scoping
- closures
- procedures as values
- procedure call

Simple Statements

〈s〉 denotes a statement

```
\langles\rangle ::= skip
    \langlex\rangle=\langley\rangle
    <x\rangle=\langlev\rangle
    \langle\mp@subsup{s}{1}{}\rangle\langle\mp@subsup{\textrm{s}}{2}{}\rangle
        local }\langlex\rangle\mathrm{ in \s }\mp@subsup{\textrm{s}}{1}{}\rangle\mathrm{ end
        if }\langle\textrm{x}\rangle\mathrm{ then }\langle\mp@subsup{\textrm{s}}{1}{}\rangle\mathrm{ else }\langle\mp@subsup{\textrm{S}}{2}{}\rangle\mathrm{ end
\langlev\rangle ::= ...
```

empty statement variable-variable binding
variable-value binding sequential composition declaration conditional
value expression (no procedures here)

Executing skip

- Execution of semantic statement (skip, E)
- Do nothing
- means: continue with next statement
- non-suspending statement

Executing skip

- No effect on store σ
- Non-suspending statement

Executing skip

(skip,)
$S T$
σ
:---:

■ Remember: topmost statement is always popped!

Executing Sequential Composition

- Semantic statement is
$\left(\langle\mathrm{s}\rangle_{1}\langle\mathrm{~s}\rangle_{2}, E\right)$
- Push in following order
- $\langle\mathrm{S}\rangle_{2} \quad$ executes after
- $\langle\mathrm{s}\rangle_{1} \quad$ executes next
- Statement is non-suspending

Sequential Composition

- Decompose statement sequences
- environment is given to both statements

Executing local

- Semantic statement is
(local $\langle\mathbf{x}\rangle$ in $\langle\mathbf{S}\rangle$ end, E)
- Execute as follows:
- create new variable y in store
- create new environment $E=E+\{\langle x\rangle \rightarrow y\}$
- push ($\langle\mathrm{s}\rangle, E$)
- Statement is non-suspending

Executing local

- With $E=E+\{\langle x\rangle \rightarrow y\}$

Variable-Variable Equality

- Semantic statement is
$(\langle\mathrm{x}\rangle=\langle\mathrm{y}\rangle, E)$
- Execute as follows
a bind $E(\langle\mathrm{x}\rangle)$ and $E(\langle\mathrm{y}\rangle)$ in store
- Statement is non-suspending

Executing Variable-Variable Equality

- σ^{\prime} is obtained from σ by binding $E(\langle\mathrm{x}\rangle)$ and $E(\langle\mathrm{y}\rangle)$ in store

Variable-Value Equality

- Semantic statement is

$$
(\langle\mathrm{x}\rangle=\langle\mathrm{v}\rangle, E)
$$

where $\langle\mathrm{v}\rangle$ is a number or a record (procedures will be discussed later)

- Execute as follows
- create a variable y in store and let y refers to value $\langle\mathrm{v}\rangle$
- any identifier $\langle z\rangle$ from $\langle v\rangle$ is replaced by $E(\langle z\rangle)$
- bind $E(\langle\mathrm{x}\rangle)$ and y in store
- Statement is non-suspending

Executing Variable-Value Equality

- y refers to value $\langle\mathrm{v}\rangle$
- Store σ is modified into σ ' such that:
a any identifier $\langle\mathrm{z}\rangle$ from $\langle\mathrm{v}\rangle$ is replaced by $E(\langle z\rangle)$
- bind $E(\langle\mathrm{X}\rangle)$ and y in store σ

Suspending Statements

- All statements so far can always execute
- non-suspending (or immediate)
- Conditional?
- requires condition $\langle x\rangle$ to be bound variable
- activation condition: $\langle x\rangle$ is bound (determined)

Executing if

- Semantic statement is
(if $\langle\mathrm{x}\rangle$ then $\langle\mathrm{S}\rangle_{1}$ else $\langle\mathrm{S}\rangle_{2}$ end, E)
- If the activation condition "bound((X$\rangle)$ " is true
- if $E(\langle x\rangle)$ bound to true
a if $E($ (x) $)$ bound to false push $\langle s\rangle_{1}$
- otherwise, raise error
- Otherwise, suspend the if statement...

Executing if

- If the activation condition "bound((x $\rangle\rangle$)" is true
- if $E(\langle\mathrm{x}\rangle)$ bound to true

Executing if

- If the activation condition "bound((x $\rangle\rangle$)" is true
- if $E(x\rangle)$ bound to false

An Example

```
local X in
    local B in
        B=true
        if B then X=1 else skip end
    end
end
```

- We can reason that x will be bound to 1

Example: Initial State

```
([(local X in
    local B in
    B=true
    if B then X=1 else skip end
    end
    end, \varnothing)],
\varnothing)
```

- Start with empty store and empty environment

Example: local

([(local B in

$$
\begin{aligned}
& \text { B=true } \\
& \text { if } B \text { then } X=1 \text { else skip end } \\
& \text { end, } \\
& \{X \rightarrow X\}\}]
\end{aligned}
$$

$$
\{x\})
$$

- Create new store variable x
- Continue with new environment

Example: local

([($\mathrm{B}=\mathrm{true}$
if B then $X=1$ else skip end
,
$\{\mathrm{B} \rightarrow b, \mathrm{x} \rightarrow x\})]$,
$\{b, x\}$)

- Create new store variable b
- Continue with new environment

Example: Sequential Composition

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
(B=\text { true },\{B \rightarrow b, x \rightarrow x\}), \\
\quad(\text { if } B \text { then } X=1 \\
\quad \text { else skip end, }\{B \rightarrow b, x \rightarrow x\})], \\
\{b, x\})
\end{array}\right.\right.
\end{aligned}
$$

- Decompose to two statements
- Stack has now two semantic statements

Example: Variable-Value Assignment

$$
\begin{aligned}
& \left(\left[\begin{array}{l}
(\text { if } B \text { then } X=1 \\
\quad \text { else skip end, }\{B \rightarrow b, x \rightarrow x\})]
\end{array}\right.\right. \\
& \{b=\text { true, } x\})
\end{aligned}
$$

- Environment maps в to b
- Bind b to true

Example: if

$$
\begin{aligned}
& ([(x=1, \quad\{\mathrm{~B} \rightarrow b, \mathrm{x} \rightarrow x\})], \\
& \{b=\text { true }, x\})
\end{aligned}
$$

- Environment maps B to b
- Bind b to true
- Because the activation condition "bound ($\langle\mathrm{x}\rangle$)" is true, continue with then branch of if statement

Example: Variable-Value Assignment

([], $\{b=$ true, $x=1\}$)

- Environment maps x to x
- Binds x to 1
- Computation terminates as stack is empty

Summary up to now

- Semantic statement execute by
- popping itself always
- creating environment local
- manipulating store local, =
- pushing new statements local, if
sequential composition
- Semantic statement can suspend
- activation condition (if statement)
- read store

Pattern Matching

- Semantic statement is

$$
\begin{aligned}
& \text { (case }\langle\mathrm{x}\rangle \\
& \text { of }\langle\text { lit }\rangle\left\langle\langle\text { feat }\rangle_{1}:\langle\mathrm{y}\rangle_{1} \ldots\langle\text { feat }\rangle_{n}:\langle\mathrm{y}\rangle_{n}\right) \text { then }\langle\mathrm{s}\rangle_{1} \\
& \text { else } \left.\langle\mathrm{s}\rangle_{2} \text { end, } E\right)
\end{aligned}
$$

- It is a suspending statement
- Activation condition is: "bound $(\langle\mathrm{x}\rangle$)"
- If activation condition is false, then suspend!

Pattern Matching

- Semantic statement is

```
(case <x\rangle
    of \langlelit\rangle}\langle\langle\mathrm{ feat }\mp@subsup{\rangle}{1}{}:\langle\textrm{y}\mp@subsup{\rangle}{1}{}\ldots..\langlefeat\rangle\mp@subsup{\rangle}{n}{}:\langle\textrm{y}\mp@subsup{\rangle}{n}{})\mathrm{ then }\langle\textrm{s}\mp@subsup{\rangle}{1}{
    else }\langle\textrm{s}\mp@subsup{\rangle}{2}{}\mathrm{ end, }E\mathrm{ )
```

- If $E(\langle\mathrm{x}\rangle)$ matches the pattern, that is,
- label of $E(\langle\mathrm{x}\rangle)$ is \langle lit \rangle and
- its arity is [\{feat $\left.\rangle_{1} \ldots\langle\text { feat }\rangle_{n}\right]$),
then push

$$
\begin{aligned}
& \text { (}\langle\mathrm{S}\rangle_{1} \text {, } \\
& E+\left\{\langle\mathrm{y}\rangle_{1} \rightarrow E(\langle\mathrm{x}\rangle) .\langle\text { feat }\rangle_{1},\right. \\
& \left.\left\langle\ddot{y}_{n}{ }^{\prime} \rightarrow E(\langle x\rangle) .\langle\text { feat }\rangle_{n}\right\}\right)
\end{aligned}
$$

Pattern Matching

- Semantic statement is
(case $\langle x\rangle$
of \langle lit $\rangle\left\langle\langle\text { feat }\rangle_{1}:\langle\mathrm{y}\rangle_{1} \ldots\langle\text { feat }\rangle_{n}:\langle\mathrm{y}\rangle_{n}\right)$ then $\langle\mathrm{s}\rangle_{1}$
else $\langle\mathrm{s}\rangle_{2}$ end, E)
- If $E(\langle\mathrm{x}\rangle)$ does not match pattern, push $\left(\langle\mathrm{s}\rangle_{2}, E\right)$

Pattern Matching

- Semantic statement is

> (case $\langle\mathrm{x}\rangle$
> of \langle lit $\rangle\left\langle\langle\text { feat }\rangle_{1}:\langle\mathrm{y}\rangle_{1} \ldots\langle\text { feat }\rangle_{n}:\langle\mathrm{y}\rangle_{n}\right)$ then $\langle\mathrm{s}\rangle_{1}$
> else $\langle\mathrm{s}\rangle_{2}$ end, E)

- It does not introduce new variables in the store
- Identifiers $\langle y\rangle_{1} \ldots\langle\mathrm{y}\rangle_{n}$ are visible only in $\langle\mathrm{s}\rangle_{1}$

Executing case

- If the activation condition "bound((X$\rangle)$ " is true - if $E(\langle\mathrm{x}\rangle)$ matches the pattern

Executing case

- If the activation condition "bound($\langle\mathrm{X}\rangle$)" is true - if $E(\langle x\rangle)$ does not match the pattern

Example: case Statement

```
([(case X of
        f(X1 X2) then Y = g(X2 X1)
        else Y = c
        end,
        {X ->v1, Y ->v2})], % Env
    {v1=f(v3 v4), v2, v3=a, v4=b} % Store
)
```

- We declared $\mathrm{X}, \mathrm{Y}, \mathrm{X} 1, \mathrm{X} 2$ as local identifiers and $X=f(v 3 \quad v 4), X 1=a$ and $X 2=b$
- What is the value of Y after executing case?

Example: case Statement

```
([(Y = g(X2 X1),
    {X }->\textrm{v}1,\textrm{Y}->\textrm{v}2,\textrm{X1}->\textrm{v}3,\textrm{X}2->\textrm{v}4}
    ],
    {v1=f(v3 v4), v2, v3=a, v4=b}
)
```

- The activation condition "bound $(\langle x\rangle)$ " is true
- Remember that $\mathrm{X} 1=\mathrm{a}, \mathrm{x} 2=\mathrm{b}$

Example: case Statement

```
([],
    \(\{v 1=f(v 3 \mathrm{v} 4)\),
        \(\mathrm{v} 2=\mathrm{g}(\mathrm{v} 4 \mathrm{v} 3), \mathrm{v} 3=\mathrm{a}, \mathrm{v} 4=\mathrm{b}\}\)
)
```

- Remember Y refers to v2, so

$$
Y=g(b a)
$$

Summary

- Kernel language
- linguistic abstraction
- data types
- variables and partial values
- statements and expressions
- Computing with procedures (next lecture)
- lexical scoping
- closures
- procedures as values
- procedure call

Reading Suggestions

- from [van Roy,Haridi; 2004]
- Chapter 2, Sections 2.1.1-2.3.5, 2.8
- Appendices B, C, D
- Exercises 2.9.1-2.9.3, 2.9.13

