Overview

] Some Oz concepts
Programming l.anguage Concepts, = Pattern matching

o Tail recursion

CSZl 04 o Lazy evaluation

Kernel language
Lecture 3 Juad

o statements and expressions

Kernel language semantics

_ o Use operational semantics
Statements, Kernel Language, Abstract Machine Aid programmer in reasoning and understanding

o The model is a sort of an abstract machine, but leaves out
details about registers and explicit memory address
Aid implementer to do an efficient execution on a real machine

31 Aug 2007 CS2104, Lecture 3 1 31 Aug 2007 CS2104, Tecture 3

Reminder of last lecture Pattern-Matching on Numbers

Programming language definition: syntax, semantics
o CFG, EBNF

Data structures case N
o simple: integers, floats, literals of 0 then 1
o compound: records, tuples, lists [] N then N*{Fact (N-1)} end

Kernel language end
o linguistic abstraction

o data types

o variables and partial values

o unification

fun {Fact N}

[N}

31 Aug 2007 CS2104, Tecture 3 31 Aug 2007 CS2104, Tecture 3

Pattern Matching on Structures Linear Recursion

fun {Fact N}
case N
of 0 then 1
[l N then N * {Fact (N-1)} end

fun {Depth T}

case Xs of

end
leaf (value:_) then 1
. : . . oing down
[] node(left:L right:R value:_) (Fact 3} imuimn
then 1+{Max {Depth L} {Depth R}} = 3*{Fact 2}
end = 3*(2*{Fact 1})
= 3*(2* (1*{Fact 0}))
end = 3% (2% (1*1))
= 3% (2*1)
= 3%2 return from
= 6 recursion
31 Aug 2007 CS2104, Tecture 3 5 31 Aug 2007 CS2104, Tecture 3
Compared to Conditional Accumulating Parameter

fun {Fact N } {FactT N 1} end
fun {SumList Xs}
case Xs
of nil then 0
[1] X|Xr then X + {SumList Xr} end

Accumulating Parameter

fun {FactT N Acc}

end case N
of 0 then Acc
Using only Conditional [N then {FactT (N-1) N*Acc} end

fun {SumList Xs} / end
then 0

if {Label Xs}==‘'nil’
elseif {Label Xs}=='|’ andthen {Width Xs}==
then Xs.1 +{SumlList Xs.2}
end
end

31 Aug 2007 CS2104, Tecture 3 6 31 Aug 2007 CS2104, Tecture 3

Accumulating Parameter Lazy Evaluation

Infinite list of numbers!

{Fact 3}

= {FactT 3 1} fun lazy {Ints N} N|{Ints N+1} end
= {FactT 2 3*1} going down

= {FactT 2 3}) recursion and accumulating {Ints 2}

= {FactT 1 2*3} result in parameter = 2|{Ints 3}

= {FactT 1 6} = 2| (3| {Ints 4})

= {FactT 0 1*6} = 2| (3] (4] {Ints 5}))

= {FactT 0 6} = 21 (31 (41 (51{Ints 6})))

= 6 = 21 (31 (41 (51 (6]{Ints 7}))))

: T - '
Accumulating Parameter = Tail Recursion = Loop! What if we were to compute : (SumList (Ints 2)) 7

31 Aug 2007 CS2104, Lecture 3 9 31 Aug 2007 CS2104, Lecture 3

Tail Recursion = Loop ‘ Taking first N elements of List
fun {Take L N}
fun {FactT N Acc} if N<=0 then nil
else case L of
case N nil then nil
of O then Acc . [1] X|Xs then X|{Take Xs (N-1)} end end

[l N then N=N-1

Acc=N*Acc o {Take [a b c d] 2}
(FactT N Jume — al{Take [b ¢ d] 1}
= alb|{Take [c d] 0}

end \ = alblnil
end {Take {Ints 2} 2}

Last call = Tail call = 2

31 Aug 2007 CS2104, Lecture 3 10 31 Aug 2007 CS2104, Lecture 3

Fager Evaluation

Loop as Infinite list
eagerly evaluated!

{Take {Ints 2} 2}
= {Take 2|{Ints 3} 2}
= {Take 2| (3|{Ints 4}) 2}
= {Take 2] (3| (4|{Ints 5}))} 2}
= {Take 2 (3] (4| (5|{Ints 6}))) 2}
= {Take 2| (31 (41 (51 (6]{Ints 7})))) 2}

31 Aug 2007 CS2104, Tecture 3 13

Lazy Evaluation

Evaluate the lazy argument only as needed

{Take {Ints 2} 2}

= {Take 2| {Ints 3} 2}

= 2| {Take {Ints 3} 1}

= 2| {Take 3|{Ints 4} 1}
= 2| (3] {Take {Ints 4} 0})
=

2(3nil)\\\\\

terminates despite infinite list

31 Aug 2007 CS2104, Tecture 3 14

Kernel Concepts

Single-assignment store
Environment

Semantic statement

Execution state and Computation

Statements Execution for:

o skip and sequential composition
o variable declaration

o store manipulation

o conditional

31 Aug 2007 CS2104, Tecture 3

Procedure Declarations

Kernel language
Xy =proc {$ (V) ... (Y1 (S)end
is a legal statement

o binds (x) to procedure value
o declares (introduces a procedure)
Familiar syntactic variant

proc {{X) <y1> . ..<yn>} (8) end
introduces (declares) the procedure (x)

A procedure declaration is a value, whereas
a procedure application is a statement!

31 Aug 2007 CS2104, Tecture 3

15

16

What Is a Procedure?

It is a value of the procedure type.

o Java: methods with void as return type
declare
X = proc {$ Y} — S is the nesting operator

{Browse 2*Y}
end

{X 3} > 6
<P/1 X>

{Browse X}

But how to return a result (as parameter) anyway?
o ldea: use an unbound variable
o Why: we can supply its value after we have computed it!

31 Aug 2007 CS2104, Tecture 3 17

Operations on Procedures

Three basic operations:
a Defining them (with proc statement)
a Calling them (with { } notation)

o Testing if a value is a procedure

{IsProcedure P} returns true if P is a procedure,
and false otherwise

declare
X = proc {$ Y}
{Browse 2*Y}
end
{Browse {IsProcedure X}}

31 Aug 2007 CS2104, Tecture 3 18

Towards Computation Model

Step One: Make the language small

o Transform the language of function on partial
values to a small kernel language

Kernel language
a procedures
o records

no functions

no tuple syntax

no list syntax

no nested calls

no nested constructions

o local declarations

31 Aug 2007 CS2104, Tecture 3 19

From Function to Procedure

fun {Sum Xs}
case Xs
of nil then 0
[] X|Xr then X+{Sum Xr}
end
end
Introduce an output parameter for procedure
proc {SumP Xs N}
case Xs
of nil then N=0
[] X|Xr then N=X+{Sum Xr}

end
end

31 Aug 2007 CS2104, Tecture 3 20

Why we need 10ca1 statements?

proc {SumP Xs N}
case Xs
of nil then N=0
[] X|Xr then
local M in {SumP Xr M} N=X+M end
end
end

Local declaration of variables supported.

Needed to allow kernel language to be based
entirely on procedures

31 Aug 2007 CS2104, Tecture 3 21

How N was actually transmitted?

Having the call (sump [1 2 3] c}, the
identifier xs isboundto (1 2 37 and cis
unbound.

At the callee of sump, Wwhenever n is being
bound, so will be c.

This way of passing parameters is called call
by reference.
Procedures output are passed as references
to unbound variables, which are bound inside
the procedure.

31 Aug 2007 CS2104, Tecture 3

L.ocal Declarations

local X in .. end

Introduces the variable identifier x

o visible between in and end

o called scope of the variable/declaration
Creates a new store variable

Links environment identifier to store variable

31 Aug 2007 CS2104, Tecture 3

Abbreviations for Declarations

Kernel language
o just one variable introduced at a time
o no assignment when first declared

Oz language syntax supports:

o several variables at a time

o variables can be also assigned (initialized) when
introduced

31 Aug 2007 CS2104, Tecture 3

Transforming Declarations Multiple
Variables

local X in

local X Y in local Y in

(statement) (statement)

end end

end

31 Aug 2007 CS2104, Tecture 3

Transforming away Declarations’
Initialization

local

= ' local X in
X=(expression)

in X=(expression)

(statement) (statement)

end end

31 Aug 2007 CS2104, Tecture 3

Transforming Expressions

Replace function calls by procedure calls
Use local declaration for intermediate values

Order of replacements:
left to right
innermost first

O

it is different for record construction: outermost first

a
a
o Left associativity: 1+2+3 means ((1+2) +3)
a

Right associativity: a |b|x means (al| (b|X)), SO
build the first 7 | 7, then the second 7 |/

31 Aug 2007 CS2104, Tecture 3

Function Call to Procedure Call

X={F Y} {F Y X}

31 Aug 2007 CS2104, Tecture 3

‘ Replacing Nested Calls
local Ul in
(P (F X Y} 2} (F X Y UL}
{Pp Ul 7z}
end
‘ Replacing Nested Calls
local U2 in
local Ul in
{G X Ul}
(P {F (G X} Y} 2} [(F U1 Y U2)
end
{P U2 7}

end

31 Aug 2007 CS2104, Tecture 3

30

| Replacing Conditionals

local B in

if X>Y then B = (X>Y)
. if B then
else
I:> else
end
end
end

31 Aug 2007 CS2104, Tecture 3

31

‘ Expressions to Statements

X = 1if B then if B then
- X =
else E:> else
- X =
end end

31 Aug 2007 CS2104, Tecture 3

Functions to Procedures: Length (0)

fun {Length Xs}
case Xs
of nil then 0
[] X|Xr then 1+{Length Xr}
end

end

31 Aug 2007 CS2104, Lecture 3 33

Functions to Procedures: Length (1)

proc {Length Xs N}
N=case Xs
of nil then 0
[] X|Xr then 1+{Length Xr}
end

end

= Make it a procedure

31 Aug 2007 CS2104, Lecture 3 34

Functions to Procedures: Length (2)

proc {Length Xs N}

case Xs
of nil then N=0
[] X|Xr then N=1+{Length Xr}

end

end

= Expressions to statements

31 Aug 2007 CS2104, Lecture 3 35

 Functions to Procedures: Length (3)

proc {Length Xs N}

case Xs
of nil then N=0
[] X|Xr then
local U in
{Length Xr U}

N=1+U
end
end
end

= Replace function call by its corresponding proc call.

31 Aug 2007 CS2104, Lecture 3 36

Functions to Procedures

proc {Length Xs N}
case Xs
of nil then N=0
[] X|Xr then
local U in
{Length Xr U}

end
end
end

Replace operation (+, dot-access,

31 Aug 2007 CS2104, Tecture 3

: Length (4)

<, >, ...): procedure!

37

Kernel Language Statement Syntax

(sydenotes a statement

(s) :=skip
| % =<y
| (X =W)
| (s (s
| local (x) in(s,) end
| if(x) then(s,) else(s,) end
| {0y - Y }
| case(x) of {pattern) then (s, else (s,) end

Vy o= ..
(pattem) = ..

31 Aug 2007 CS2104, Tecture 3

empty statement
variable-variable binding
variable-value binding
sequential composition
declaration

conditional

procedure application
pattern matching

value expression

38

Abstract Machine

Environment maps variable identifiers to store entities
Semantic statement is a pair of:

o statement

o environment

Execution state is a pair of:

o stack of semantic statements

o single assignment store

Computation is a sequence of execution states

An abstract machine performs a computation

31 Aug 2007 CS2104, Tecture 3 39

Single Assignment Store

Single assignment store c
o set of store variables

o partitioned into
sets of variables that are equivalent but unbound
variables bound to a value (number, record or procedure)

Example store {X1, X,=X3, X,=2|X,}
o X, unbound

0 X, X3 equal and unbound

o X, bound to partial value alx,

31 Aug 2007 CS2104, Tecture 3 40

Environment Calculating with Environments

Environment E Program execution looks up values
o maps variable identifiers to entities in store o assume store o
o written as set of pairs X x a given identifier (x)
identifier X o E((x)) is the value of (x) in store ¢
store variable X

Program execution modifies environments
o for example: declaration

o add mappings for new identifiers

o overwrite existing mappings

o restrict mappings on sets of identifiers

Example of environment: { X = x, Y = y}
o maps identifier X to store variable x
o maps identifier Y to store variable y

31 Aug 2007 CS2104, Tecture 3 41 31 Aug 2007 CS2104, Tecture 3

Environment and Store Environment Adjunction
Given: environment E, store ¢ Given: Environment E
Looking up value for identifier X: then E + {X)1=2Xq, ..., O, X)
a find store variable in environment using E(X) is a new environment E with mappings added:
0 take value from o for £(X) o always take store entity from new mappings
Example: o might overwrite (or shadow) old mappings
o={X;, X;=X3, X4=2| X} E={X=>Xx,Y=>Xx}
o E(X) = x, where no information in ¢ on x,

o E(Y) =x, where ¢ binds x, to alx,

31 Aug 2007 CS2104, Tecture 3 42 31 Aug 2007 CS2104, Tecture 3

Environment Projection

Given: Environment E

E {001 -5 0}

is a new environment E where only mappings
for {(x),, ..., (X),} are retained from E

Adjunction Example

Ey={<y)—> 1}

E,=E,+{X)~>2}
o corresponds to {(X) = 2, {Y) > 1}
2 E,((X) =2

E,=E, +{(X)— 3}
o corresponds to {{X) = 3, {Y) = 1}

o E,((X)) =3

31 Aug 2007 CS2104, Tecture 3 46

Why Adjunction?

g &

Jocal X 1in

X = 2)
Tocal X 1in
X =3
{. v} E, > F
end
J

-
i =)

31 Aug 2007 CS2104, Tecture 3 47

Semantic Statements

Semantic statement
o pair of (statement, environment)

To actually execute statement:

o environment to map identifiers
modified with execution of each statement
each statement has its own environment

o store to find values
all statements modify same store
single store

(¢s), E)

31 Aug 2007 CS2104, Tecture 3 48

Stacks of Statements

Execution maintains stack of semantic
statements ST =[((s);, E,), ..., ((8),, E.)]

o always topmost statement (¢s),, E,) executes first
<S> is statement
E denotes the environment mapping

o rest of stack: remaining work to be done
Also called: semantic stack

31 Aug 2007 CS2104, Tecture 3

Execution State

Execution state (ST, 0c)
o pair of (semantic stack, store)
Computation
(ST,, oy) = (ST,, 0,) = (ST;, 65) = ...

o sequence of execution states

31 Aug 2007 CS2104, Tecture 3

49

50

31 Aug 2007

31 Aug 2007

Program Execution

Initial execution state
([(s).9)], 9)

o empty store %)

o stack with semantic statement [((s),9)]
single statement (s), empty environment &

At each execution step

o pop topmost element of semantic stack

o execute according to statement

If semantic stack is empty, then execution stops

CS2104, Lecture 3 51

Semantic Stack States

Semantic stack can be in following states

o terminated stack is empty

a runnable can do execution step

a suspended stack not empty, no execution
step possible

Statements
2 non-suspending
o suspending

can always execute
need values from store
dataflow behavior

CS2104, Tecture 3 52

Summary up to now Simple Statements

Single assignment store c (s) denotes a statement
Environments E _

o adjunction, projection E+{.} E|, (8) = SKip emply statement
S tic stat t | OO =(y) variable-variable binding
eman !C stalements ((s); E) | =V variable-value binding
Semantic stacks [(¢s), E) ...] | (s {(sy sequential composition

Execution state (ST, o) | local (x)in(sy) end declaration
Computation = sequence of execution states | oo then(s,) eise (sp) end conditional
Program execution vy = value expression

o runnable, terminated, suspended (no procedures here)
Statements

o suspending, non-suspending

31 Aug 2007 CS2104, Tecture 3 53 31 Aug 2007 CS2104, Tecture 3 55

Statement Execution Executing sxip
Simple statements _ _
o variable declaration (skip, E)
o store manipulation Do nothing

o Conditional (if statement)

Computing with procedures (later lecture)
o lexical scoping

o closures

o procedures as values

a procedure call

2 means: continue with next statement
o non-suspending statement

31 Aug 2007 CS2104, Tecture 3 54 31 Aug 2007 CS2104, Tecture 3 56

Executing sxip ‘ Executing Sequential Composition

= Semantic statement is

+ o |:> + o (<S>1 <S>2! E)

ST ST = Push in following order

a (8), executes after
a (S)y executes next

= Statement is non-suspending
= No effect on store ¢
= Non-suspending statement

31 Aug 2007 CS2104, Lecture 3 57 31 Aug 2007 CS2104, Lecture 3

Executing sxip ‘ Sequential Composition

ST ST

ST

m Remember: topmost statement is always = Decompose statement sequences
popped! o environment is given to both statements

31 Aug 2007 CS2104, Lecture 3 58 31 Aug 2007 CS2104, Lecture 3

‘ Executing 1oca1

= Semantic statement is
(local (X) in {(S) end, E)
= Execute as follows:
o create new variable y in store
o create new environment E' = E + {(X) = y}
a push ((s), E)
= Statement is non-suspending

 Variable-Variable Equality

= Semantic statement is

(x> = <y), E)
= Execute as follows
a bind E({x)) and E({y)) in store

= Statement is non-suspending

31 Aug 2007 CS2104, Tecture 3

61 31 Aug 2007 CS2104, Lecture 3 63

EXGCU.tiﬁg local

ST ST

w With E = E + {{(X) = y}

Executing Variable-Variable Equality

y N Lo
ST °© = ST °

= ¢ is obtained from ¢ by binding E({x)) and
E((y)) in store

31 Aug 2007 CS2104, Tecture 3

62 31 Aug 2007 CS2104, Lecture 3 64

Variable-Value Equality Suspending Statements

Semantic statement is All statements so far can always execute
() = (v), E) o non-suspending (or immediate)
where (v) is a number or a record (procedures will Conditional?

be discussed later)

Execute as follows

o create a variable y in store and let y refers to value (v)
o any identifier (z) from (v) is replaced by E({(z))

o bind E({(x)) and y in store

Statement is non-suspending

o requires condition (x) to be bound variable
o activation condition: {x) is bound (determined)

31 Aug 2007 CS2104, Tecture 3 65 31 Aug 2007 CS2104, Tecture 3 67

Executing Variable-Value Equality Executing it
() = (v, B) Semantic statement is
N s |:> N y (if <X>th.en <S>1 else <S>2 end, E) N
ST ST 5’ If the activation condition “bound({x})” is true
o if E({x)) bound to true push ¢s),
o if E((x)) bound to false push ¢s),
y refers to value (v) o otherwise, raise error
Store o is modified into ¢’ such that: Otherwise, suspend the ir statement...

o any identifier (z) from (v) is replaced by E({z))
o bind E({(x)) and y in store ¢

31 Aug 2007 CS2104, Tecture 3 66 31 Aug 2007 CS2104, Tecture 3 68

Executing it

= If the activation condition “bound({x))” is true
a if E({(x)) bound to t rue

+ls| =@ tlo

ST

ST

31 Aug 2007 CS2104, Lecture 3 69

Executing it

= If the activation condition “bound({x))” is true
a if E(x)) bound to false

c = T lo

ST

31 Aug 2007 CS2104, Lecture 3 70

An Example

local X in
local B in
B=true
if B then X=1 else skip end
end

end

= We can reason that x will be bound to 1

31 Aug 2007 CS2104, Lecture 3 7

‘ Example: Initial State

([(local X in
local B in
B=true
if B then X=1 else skip end
end

end, Q)] ’
@)

= Start with empty store and empty environment

31 Aug 2007 CS2104, Lecture 3 72

Example: local

([(local B in
B=true

if B then X=1 else skip end

end,
x=>xD1,
XD

Create new store variable x
Continue with new environment

31 Aug 2007 CS2104, Tecture 3
Example: local

([(B=t rue

if B then X=1 else skip end

{B>bx=>x)],
{b,x})

Create new store variable b
Continue with new environment

31 Aug 2007 CS2104, Tecture 3

Example: Sequential Composition

([(B=true, {B - b: X = X}) ’
(if B then x=1
else skip end, {B - b, x> X})] y

{b,x})

Decompose to two statements
Stack has now two semantic statements

73 31 Aug 2007 CS2104, Tecture 3 75

Example: Variable-Value Assignment

([(if B then x=1
else skip end, {B - b, X = X})] ’
{b=true, X})

Environment maps s to b
Bind bto true

74 31 Aug 2007 CS2104, Tecture 3 76

Example: it Summary up to now

([G=1, B b, x> x)] Semantic statement execute by
’ ’ ’ a popping itself always
{b=true X}) . .
’ a Creatlng environment local
o manipulating store local, =
Environment maps s to b o pushing new statements 1ocal, if
Bind b10 true sequential composition
Because the activation condition “bound((x))” is Semantic state.njent.can suspend
true, continue with then branch of it statement o activation condition (i f statement)

0 read store

31 Aug 2007 CS2104, Tecture 3 77 31 Aug 2007 CS2104, Tecture 3 79

Example: Variable-Value Assignment Pattern Matching

Semantic statement is

CL], (case (X)
{b=true, x=1}) of (lity((featy,(y), ... (feat),y),) then (s),
else (S), end, E)

It is a suspending statement

Environment maps x to x Activation condition is: “bound({x))”

. If activation condition is false, then suspend!
Binds xto 1

Computation terminates as stack is empty

31 Aug 2007 CS2104, Lecture 3 78 31 Aug 2007 CS2104, Lecture 3 80

Pattern Matching

= Semantic statement is
(case (X)

of (lit)((feat),(y); ... (feat),(y),) then (s),

else (S), end, E)

= If E((X)) matches the pattern, that is,

o label of E({x)) is (lit) and
o its arity is [(feat),... (feat),]),

= then push

((S)1,
E + {<y); = E((x)). (feat),

(Y = E(X). (feat), })

Pattern Matching

= Semantic statement is

(case (X)
of (lity((feat),:(y); ... (feat),:(y),) then (s),
else (S), end, E)

= It does not introduce new variables in the store
= ldentifiers (), ... (y), are visible only in (s),

31 Aug 2007

CS2104, Tecture 3

81

31 Aug 2007 CS2104, Lecture 3 83

Pattern Matching

= Semantic statement is

= If E({(x)) does not match pattern, push

(case (X)

of (lity((feat),(y); ... (feat),:(y),) then (s),

else (S), end, E)

({S)2s E)

Executing case

= If the activation condition “bound({x))” is true
o if E((x)) matches the pattern

o |2

ST

31 Aug 2007

CS2104, Tecture 3

31 Aug 2007 CS2104, Lecture 3 84

Executing case

= If the activation condition “bound({x))” is true
o if E({(x)) does not match the pattern

o |2

31 Aug 2007

CS2104, Tecture 3 85

| Example: case Statement

([(case X of

f (X1 X2) then Y = g(X2 X1)
else Y = ¢
end,

{x =v1,Y =v2})], % Env
{vi=f (v3 v4),Vv2, v3=a, v4=b} % Store
)

= We declared X, v, X1, X2 as local identifiers and
X=f (v3 v4), X1l=a and X2=Db
= What is the value of Y after executing case?

31 Aug 2007 CS2104, Tecture 3

86

| Example: case Statement

([(¥ = g(x2 x1),
{x =2v1, Y 9v2, x1 V3, X2 2v4})

1,
{vi=f (v3 v4),Vv2, v3=a, v4=b}

)

= The activation condition “bound({x))” is t rue
= Remember that x1=a, x2=b

31 Aug 2007 CS2104, Lecture 3 87

| Example: case Statement

(L],
{vl=f (v3 v4),
v2=g(v4 v3),v3=a,v4=b}

)

= Remember Y refersto v2, so

Y = g(b a)

31 Aug 2007 CS2104, Lecture 3 88

Summary

Kernel language

o linguistic abstraction

o data types

o variables and partial values

o statements and expressions

Computing with procedures (next lecture)
o lexical scoping

o closures

o procedures as values

a procedure call

Reading Suggestions

from [van Roy,Haridi; 2004]

o Chapter 2, Sections 2.1.1-2.3.5, 2.8
o Appendices B, C, D

o Exercises 2.9.1-2.9.3, 2.9.13

31 Aug 2007 CS2104, Tecture 3

