Programming Language Concepts,

CS2104
[ecture 4

Higher-Order Programming

7 Sep 2007 CS2104, Lecture 4 1

Reminder of last lecture

Kernel language

o linguistic abstraction

o data types

o variables and partial values
o statements and expressions

Kernel language semantics
o Use operational semantics
Aid programmer in reasoning and understanding

o Abstract machine model without details about registers and
explicit memory address
Aid implementer to do an efficient execution on a real machine

7 Sep 2007 CS2104, Lecture 4 2

Overview

Computing with procedures
o lexical scoping

o closures

o procedures as values

o procedure call

Higher-Order Programming
o proc. abstraction
o lazy arguments
o genericity

o loop abstraction
o folding

7 Sep 2007 CS2104, Lecture 4

Procedures

Defining procedures
o how to handle external references?
o which variables matter?

Calling procedures

o what do the variables refer to?
o how to pass parameters?

o how about external references?
o where to continue execution?

7 Sep 2007 CS2104, Lecture 4

Identifiers in Procedures

P = proc {$ X Y}
if X>Y then 7Z=1 else 7=0 end

end

p captures the declared procedure
x and v are called (formal) parameters
z 1S called an external reference

7 Sep 2007 CS2104, Lecture 4

Free and Bound Identifiers

local 7 in

if X>Y then 7Z=1 else 7=0 end
end

x and y are free (variable) identifiers in this
statement

7z IS @ bound (variable) identifier in this
statement

7 Sep 2007 CS2104, Lecture 4

Free and Bound Identifiers

local@in

if X>Y then 7Z=1 else 7=0 end

end

Declaration Occurrence

x and vy are free variable identifiers in this
statement (declared outside)

7z 1S @ bound variable identifier in this
statement (declared inside)

7 Sep 2007 CS2104, Lecture 4

Free and Bound Occurrences

An occurrence of x Is bound, if it is inside the
body of either local, proc or case.

local X in ..X. end
proc {$.X.} in .X. end

case Y of £(X) then .X. end

An occurrence of x IS free In a statement, If it
IS not a bound occurrence.

7 Sep 2007 CS2104, Lecture 4

Free Identifiers and Free Occurrences

Free occurrences can only exist in
incomplete program fragments, i.e.,
statements that cannot run.

In a running program, it is always true that
every identifier occurrence is bound. That is it
IS In closed-form.

7 Sep 2007 CS2104, Lecture 4 9

Free Identifiers and Free Occurrences

Al=15
A2=22
B=A1+A2

The identifiers occurrences ~1, »2, and B, are
free.

This statement cannot be run.

7 Sep 2007 CS2104, Lecture 4

10

Free Identifiers and Free Occurrences

local Al A2 1n
Al=15
A2=22
B=A1+A2

end

The identifier occurrences 21 and A2 are
bound and the occurrence B Is free.

This statement still cannot be run.

7 Sep 2007 CS2104, Lecture 4

11

Free Identifiers and Free Occurrences

local B 1in
local A1l A2 1in
Al=15
A2=22
B=A1+A2
end
{Browse B}
end

This is in closed-form since it has no free identifier
occurrences.

It can be executed!

7 Sep 2007 CS2104, Lecture 4

12

Procedures

proc {Max X Y 7?7} 5 "?" 1s jJust a comment
if X>=Y then Z=X else Z=Y end
end

{Max 15 22 C}

When max is called, the identifiers x, v, and z are

bound to 15, 22, and the unbound variable
referenced by c.

Can this code be executed?

7 Sep 2007 CS2104, Lecture 4 13

Procedures.

No, because mMax and c are free identifiers!

local Max C 1in
proc {Max X Y ?2Z}
1f X>=Y then 7Z=X else Z=Y end
end
{Max 15 22 C}
{Browse C}

end

7 Sep 2007 CS2104, Lecture 4

14

Procedures with external references

proc {LB X 77}
i1f X>=Y then 72=X else 7Z=Y end
end

The identifier v is not one of the procedure
arguments.

Where does vy come from? The value of v
when the procedure is defined.

This is a consequence of static scoping.

7 Sep 2007 CS2104, Lecture 4 15

‘ Procedures with external references

local Y LB in
Y=10
proc {LB X ?7Z}
i1f X>=Y then 7=X else 7=Y end
end
local Y=3 Z1 in
{LB 5 z1}
end
end
= Call {TB 5 2z} bind z to 10.
= Binding of Yy=3 when LB is called is ignored.

= Binding of Y=10 when the procedure is defined is
important.

7 Sep 2007 CS2104, Lecture 4 16

Lexical Scoping or Static Scoping

The meaning of an identifier like x Is
determined by the innermost local statement
that declares «x.

The area of the program where x keeps this
meaning is called the scope of x.

We can find out the scope of an identifier by
inspecting the text of the program.

This scoping rule is called lexical scoping or
static scoping.

7 Sep 2007 CS2104, Lecture 4 17

Lexical Scoping or Static Scoping

local X in —~
X=15
local X in

X=20 _

{Browse X}

end /

{Browse X}

_

end

= There is just one identifier, x, but at different points
during the execution, it refers to different variables (x,
and x,).

7 Sep 2007 CS2104, Lecture 4 18

Lexical Scoping

local Z in
Z=1
proc {P X Y} Y=X+Z end

end

A procedure value is often called a closure
because it contains an environment as well
as a procedure definition.

7 Sep 2007 CS2104, Lecture 4

19

Dynamic versus Static Scoping

Static scope.

o The variable corresponding to an identifier
occurrence is the one defined in the fextually
Innermost declaration surrounding the occurrence
In the source program.

Dynamic scope.

o The variable corresponding to an identifier
occurrence is the one in the most-recent
declaration seen during the execution leading up
to the current statement.

7 Sep 2007 CS2104, Lecture 4 20

Dynamic scoping versus static scoping

local P Q in
proc {Q X} {Browse stat (X)} end
proc {P X} {Q X} end
local Q in
proc {Q X} {Browse dyn (X)} end
{P hello}
end
end

What should this display, stat (hello) or dyn(hello) ?

Static scoping says that it will display stat (hello),
because P uses the version of O that exists at P’s definition.

7 Sep 2007 CS2104, Lecture 4 21

Contextual Environment

When defining procedure, construct

contextual environment
o maps all external references...
o ...to values at the time of definition

Procedure definition creates a closure
o pair of procedure and contextual environment
o this closure is written to store

7 Sep 2007 CS2104, Lecture 4

22

Example of Contextual Environment

local Inc in
local Z =1 1in
proc {Inc X Y} Y = X + Z end

local Y 1in
{Inc 2 Y}

{Browse Y}

end Closure for
end {Inc X Y}
local z = 2 in has the mapping
local Y 1n
{Inc 2 Y} {Z _}]} .
{Browse Y) based on where it was
end defined.
end

end

7 Sep 2007 CS2104, Lecture 4 23

Procedure Declaration

Semantic statement is
(Proc {{X){Y)1 ..- (¥)n} (S) end, E)

Formal parameters Ve ooer Y)p

External references (Z)1, oony (2D,

Contextual environment
CE=E|[{Z), ..., (2}

7 Sep 2007 CS2104, Lecture 4

24

Procedure Declaration

Semantic statement is
(proc {(X)(Y)1 .-- (Y25} (s) end, E)
with E((x)) = x
Create procedure value in the store and bind it
to x

(proc {$(Y) ... (V)5} (S) end,
E1{2)1; --s (Dm})

7 Sep 2007 CS2104, Lecture 4 25

Execution of Procedure Call

Semantic statement is
({X) Y - W) E)

If (x) IS not bound, then

0 suspend the execution

It E((x)) IS not a procedure value, then
0 raise an error

If E((x)) is a procedure value, but with different
number of arguments (# n), then

a0 raise an error

7 Sep 2007 CS2104, Lecture 4 26

Procedure Call

If semantic statement is

(L Yy - Y35 E)
with
E((x)) = (proc {$ (W),...{w),} (s) end, CE)

then push
((s); CE + {{(W);=>E(Y)1); ---» (W), E((Y),)})

7 Sep 2007 CS2104, Lecture 4

27

'Executin g a Procedure Call

= If the activation condition “E({x)) is determined” is t rue
o if E((x)) equals to (proc {$ (w),...(w)} (s) end, CE)

ey Y e

ST ST

7 Sep 2007 CS2104, Lecture 4 28

Summary so far

Procedure values

0 go to store

o combine procedure body and contextual environment
o contextual environment defines external references

o contextual environment is defined by lexical scoping

Procedure call

o checks for the right type

0 passes arguments by environments

a contextual environment for external references

7 Sep 2007 CS2104, Lecture 4 29

Discussion

Procedures take the values upon definition.
Application invokes these values.

Not possible in Java, C, C+*

o procedure/function/method just code
o environment is lacking

0 Java needs an object to do this

o one of the most powerful concepts in computer
science

o pioneered in Lisp/Algol 68

7 Sep 2007 CS2104, Lecture 4

30

Summary so far

Procedures are values as anything else!

Allow breathtaking programming techniques

With environments, it is easy to understand
what is the value for each identifier

7 Sep 2007 CS2104, Lecture 4

31

Higher-Order Programming

7 Sep 2007 CS2104, Lecture 4

32

Higher-Order Programming

Higher-order programming = the set of
programming techniques that are possible
with procedure values (lexically-scoped
closures)

higher-order programming is the
foundation of secure data abstraction

component-based programming and
object-oriented programming

7 Sep 2007 CS2104, Lecture 4

33

Higher-order Programming

Use of procedures as first-class values

0 can be passed as arguments
o can be constructed at runtime
2o can be stored in data structures

procedures are simply values!

Will present a number of programming
technigues using this idea

7 Sep 2007 CS2104, Lecture 4

34

Remember (I)

Functions are procedures
0 Special syntax, nested syntax, expression syntax
o They have one argument to capture its result.
Example:

fun {F X}

fun {S$S Y} X+Y end
end

a A function that returns a function that is
specialized on x

o Add result parameters to both (r x} and (s v; to
convert to procedures.

7 Sep 2007 CS2104, Lecture 4 35

Remember (11)

declare . :

F is a function of one
fun {F XJ argument, which

fun {3 Y} X+Y end corresponds to a procedure

end having two arguments
{Browse F'} 2> <P/2 F>
G={F 1} G Is an unnamed function
{Browse G} 2> <P/2>

{G Y} returns 1+Y
{Browse {G 2}} 2 3

7 Sep 2007

CS2104, Lecture 4 36

‘ Remember (11I)

o fun {F X}

fun {$ Y} X+Y end

end

Type : <Num> —->

® fun {F X Y}
X+Y

end
Type: (<Num>,

(<Num> —> <Num>)

<Num>) -> <Num>

7 Sep 2007

CS2104, Lecture 4

37

Higher-Order Programming

Basic operations:

o Procedural abstraction: the ability to convert
any statement into a procedure value

o Genericity: the ability to pass procedure
values as arguments to a procedure call

o Instantiation: the ability to return procedure
values as results from a procedure call

o Embedding: the ability to put procedure values
In data structures

7 Sep 2007 CS2104, Lecture 4 38

Higher-Order Programming

Control abstractions
o The ability to define control constructs

o Integer and list loops, accumulator loops,
folding a list (left and right)

7 Sep 2007 CS2104, Lecture 4

39

Procedural Abstraction

Procedural abstraction is the ability to convert
any statement into a procedure value

(Statement)

time

Normal Execution

7 Sep 2007

P = proc{$} (Statement) end

{P}

time

Delayed Execution

CS2104, Lecture 4 40

Procedural Abstraction

A procedure value is usually called a closure,
or more precisely, a lexically-scoped closure

o A procedure value is a pair: it combines the
procedure code with the contextual environment

Basic scheme:
o Consider any statement <s>

o Convert it into a procedure value:
P = proc {$} <s> end

o Executing {p} has exactly the same effect as
executing <s>

7 Sep 2007 CS2104, Lecture 4 41

Same Holds for Expressions

Basic scheme:
o Consider any expression <>

o Convert it into a function value:
F = fun {S} <E> end

o Executing x={r} has exactly the same effect as
executing x=k

7 Sep 2007 CS2104, Lecture 4

42

The Arguments are Evaluated

declare 7=3 x 1S evaluated as 3+1
fun {F X}
{Browse X} 2 -2 4
end
Y={F 7+1}
{Browse Y} 2> 2
declare 7=3 x 1S evaluated as function
fun {F X} value fun {$} 7z+1 end
{Browse X} -2 <P/1>
{Browse {X}} 2 > 4 (3+1 Is evaluated)
end

Y={F fun {$} Z+1 end}
{Browse Y} 2> 2

7 Sep 2007 CS2104, Lecture 4 43

Example

Suppose we want to define the operator

andthen (&& IN Java) as a function, namely
<expr1> andthen <expr2> is false if <expri>is
false, avoiding the evaluation of <expr2>

(Exercise 2.8.6, page 109)
Attempt:

fun {AndThen BR1 B2}
1f Rl then B2 else false end
end

1f {AndThen X>0 Y>0} then .. else ..

7 Sep 2007 CS2104, Lecture 4

Example

if {AndThen X>0 Y>0} then .. else ..

Does not work because both x>0 and y>o0 are
evaluated

S0, even if x>0 Is false, vy should be bound in
order to evaluate the expression y>o!

7 Sep 2007 CS2104, Lecture 4

45

Example

declare
fun {AndThen Bl B2}
1f Bl then B2 else false end
end
X=~3
Y
1f {AndThen X>0 Y>0} then
{Browse 1}
else
{Browse 2}
end
Display nothing since Y is unbound!

When called, all function’s arguments are evaluated, unless it is
procedure value.

7 Sep 2007 CS2104, Lecture 4

46

‘ Solution: Use Procedural Abstractions

fun {AndThen Bl B2}
1f {B1l} then {B2} else false end

end

1f {AndThen
(fun{S} X>0 end)
(fun{$} Y>0 end) }

then .. else .. end

7 Sep 2007 CS2104, Lecture 4

47

Example. Solution

declare
fun {AndThen BP1 BPZ2Z}
1f {BP1l} then {BP2} else false end

end
X=~3
Y
1f {AndThen

fun{S$} X>0 end

fun{$} Y>0 end }

then {Browse 1} else {Browse 2} end

Display 2 (even if vy is unbound)

7 Sep 2007 CS2104, Lecture 4

48

Genericity/ Parameterization

To make a function generic is to let any
specific entity (i.e. operation or value) in the
function body become an argument.

The entity is abstracted out of the function
body.

7 Sep 2007 CS2104, Lecture 4

49

Genericity

Replace specific entities (zero o and addition +)
by function arguments

fun {SumList Ls}

case Ls
of nil then O

[] X|Lr then X+{SumList Lr}

end
end

7 Sep 2007 CS2104, Lecture 4 50

" Genericity

fun {SumList L}

case L of
nil then O

[] X|L2 then X+{SumList L2}
end
end

1

fun {FoldR L F U}
case L of

nil then U
(] X|L2 then {F X {FoldR L2 F U}}
end

end

7 Sep 2007 CS2104, Lecture 4

51

' Types of Functions

fun {SumList L}

\

SumList :: (List Int) —-> Int

1

fun {FoldR L F U}

N\

FoldR :: {(List A) ({A BR}->B) B} —> B

7 Sep 2007 CS2104, Lecture 4 52

‘ Genericity sumList

fun {SumList Ls}
{FoldR Ls (fun {$S X Y} X+Y end)
end

{Browse {SumList [1 2 3 4]}}

0}

7 Sep 2007 CS2104, Lecture 4

53

‘ Genericity ProductList

fun {ProductlList Ls}
{FoldR Ls (fun {$ X Y} X*Y end) 1
end

{Browse {ProductList [1 2 3 4]}}

}

7 Sep 2007 CS2104, Lecture 4

54

‘ Genericity some

fun {Some Ls}
{FoldR Ls
(fun {S X Y} X orelse Y end)
end

{Browse {Some [false true false]}}

Some :: (List Bool) —> Bool

false }

7 Sep 2007 CS2104, Lecture 4

55

List Mapping

Mapping
0 each element recursively
a calling function for each element

o Construct a new list from the input list

Separate function calling by passing function
as argument

7 Sep 2007 CS2104, Lecture 4

56

‘ Other Generic Functions: Map

fun {Map Xs F}
case Xs of
nil then nil
[l X|Xr then {F X} |{Map Xr F}
end
end

{Browse {Map [1 2 3]
fun {$ X} X*X end} } %

[1 4 9]

7 Sep 2007 CS2104, Lecture 4

57

‘ Other Generic Functions: Filter

fun {Filter Xs P}

case Xs of

nil then nil
] X|Xr then
1f {P X} then X|{Filter Xr P}
else {Filter Xr P} end

end

End

{Browse {Filter [1 2 3] IsOdd}} S[1 3]

7 Sep 2007 CS2104, Lecture 4

58

‘ Types of Functions

fun {Map Xs F}
Map :: (L1st A))} —> List B

fun {Filter Xs P}

Filter :: {(List A) (A-—>Rool)} —> List A

7 Sep 2007 CS2104, Lecture 4

59

Instantiation

Instantiation: ability to return procedure
values as results from a procedure call

A factory of specialized functions

declare

fun {Add X}
fun {$ Y} X+Y end

end

Inc = {Add 1}
{Browse {Inc 5}} % shows ©

7 Sep 2007 CS2104, Lecture 4

60

Embedding

Embedding is when procedure values are put
in data structures

Embedding has many uses:

o Modules: that groups together a set of related
operations (procedures)

0 Software components : takes a set of modules as
Its arguments and returns a new module. Can be
viewed as specifying a new module in terms of
the modules it needs.

7 Sep 2007 CS2104, Lecture 4 61

Embedding. Example

declare Algebra
local
proc {Add X Y ?Z} Z=X+Y end
proc {Mul X Y ?22} Z=X*Y end
in
Algebra=op (add:Add mul:Mul)
end
A=2
B=3
{Browse {Algebra.add A B}}
{Browse {Algebra.mul A B}}

Add and Mul are procedures embedded in a data structure

7 Sep 2007 CS2104, Lecture 4 62

Control Construct - For Loop

Integer loop: repeats an operation with a sequence
of integers

proc {For I J P}
1f I > J then\skip
else {P I} {For\I+1 J P} end

end
{For 1 10 Browse}

For :: {Int Int (Int->())} —> ()

Linguistic abstraction for integer loops
for I in 1..10 do {Browse I} end

7 Sep 2007 CS2104, Lecture 4 63

Control Construct — ForAll Loop

List loop: repeats an operation for all elements of a list
proc {ForAll Xs P}
case Xs of
nil then skip
[] X|Xr then {P X} \{ForAll Xr P}
end

end ForAll :: {(List A) A->()} —> ()

{ForAll [a b c¢ d] proc{S$S I} {Browse I} end}

Linguistic abstraction for list loops

for I in [a b c¢ d] do
{Browse I}

end

7 Sep 2007 CS2104, Lecture 4 64

Control Construct — Pipe/ Compose

Can compose two functions together
fun {Compose P1 P2}

fun {$ X} \{P1l {P2 X}} end

end

Compose :: {(B—>C) (A—>B)} —> (A—>C)

Similar to pipe command used in Unix
P2 | P1

7 Sep 2007 CS2104, Lecture 4 65

Folding Lists

Consider computing the sum of list elements
0 ...or the product

o ...or all elements appended to a list

0 ...or the maximum

0 ...or number of elements, etc

What do they have in common?

Example: SumList

7 Sep 2007 CS2104, Lecture 4

SumList/Length

fun {SumList Xs}
case Xs of
nil then
[] X|Xr then
end

fun {Length Xs}
case Xs of
nil then
[] X|Xr then
end

7 Sep 2007

0
X + {SumList Xr} end

0
1 + {Length Xr} end

CS2104, Lecture 4

67

Right-Folding

= Right-folding {Foldr [x,..x,] F S}
[(F X, {F X, .. {F X, S} ..}}
or

Xi®p (%@ (o (X, ® S) .))

7 Sep 2007 CS2104, Lecture 4 68

FoldR

fun {FoldR Xs F S}
case Xs
of nil then S
[] X|Xr then {F X {FoldR Xr F S}} end

end

Not tail-recursive
Elements folded in order

7 Sep 2007 CS2104, Lecture 4

69

Instances of FoldR

fun {SumList Xs}

{FoldR Xs (fun {S X R} X+R end)
end

fun {Length Xs}

{FoldR Xs (fun {S X R} 1+R end)

end

7 Sep 2007 CS2104, Lecture 4

0}

0}

70

sumListT: Tail-Recursive

fun {SumListT Xs N}
case Xs of
nil then N
[] X|Xr then {SumListT Xr N+X}
end
end
{SumListT Xs 0}

= Question:
o How is this computation different from SumList?

7 Sep 2007 CS2104, Lecture 4

71

‘ Computation of Origmal sumList

{SumList [2 5 7]} -
2+{SumList [5 7]} =
2+ (5+{SumList [7]}) —
24 (5+ (7+{SumList nil})) =
2+ (5+(7+0)) —
2+ (5+7) _
2+12 -
14

7 Sep 2007 CS2104, Lecture 4

72

How Tail-Recursive sumnistT Compute?

{SumListT [2 5 7] O} =
{SumListT [5 7] 0+2} =
{SumListT [5 7] 2} =
{SumListT [7] 2+5} =
{SumListT [7] 7} =
{SumListT [] 7+7} =
{SumListT [] 14} =
14

7 Sep 2007 CS2104, Lecture 4

73

sumListT Shghtly Rewritten...

{SumListT [2 5 7] 0} =
{SumListT [5 7] {F 0 21}} =
{SumListT [7] {F {F 0 2} 5}} =
{SumListT nil {F {F {F 0 2} 5} 7}=

where r IS

fun {F X Y} X+Y end

7 Sep 2007 CS2104, Lecture 4 74

Left-Folding

Left-folding {FoldL [x, x, F S}
[F .. {F {F S X} X} .. X}

or
(..((S @, X;) Op X5) .. O, X,)

n

leis rere) >

7 Sep 2007 CS2104, Lecture 4

75

FoldlL and SumListT

fun {FoldlL Xs F S}
case Xs
of nil then\S
[] X|Xr then (FoldL Xr F {F S X}}

end

end FoldL :: {(List A) ({B A}->B) B} -> B

fun {SumListT Xs}
{FoldL Xs (fun {Plus X Y} X+Y end) 0}
end

7 Sep 2007 CS2104, Lecture 4 76

Properties of Foldr

Talil recursive

First element of list folded first...
o that is evaluated first.

7 Sep 2007 CS2104, Lecture 4

77

FoldL Or FoldRr?

FoldL and Foldr can be transformed to each
other, If function r is associative:
{F X {F Y Z}}== {F {F X Y} Z}

Other conditions possible.

Otherwise: choose ro1dL Of Foldr
0 depending on required order of result

7 Sep 2007 CS2104, Lecture 4 78

Example: Appending Lists

Given: list of lists
[[a b] [1 2] [e] [g]l] => [a b 1l 2 e g]

Task: compute all elements in one list in order

Solution:
fun {AppAll Xs}
{FoldR Xs Append nil}

end

Question: What would happen with Fo1dL?

7 Sep 2007 CS2104, Lecture 4

79

‘ What would happen with Fo14d1?

fun {AppAllLeft Xs}

{FoldL Xs Append nil}
end

{AppAllLeft [[a b] [1 2] [e] [g]l}
{FoldL [[a b] [1 2] [e] [g]] Append nil}

{FoldL [[1 2] [e] [g]] Append {Append nil

[a bl}}=

7 Sep 2007 CS2104, Lecture 4

80

How Does appal1reft Compute?

{FoldL [[1 2] T[e]

{FoldL [[e] [g]]

{FoldL [[e] [g]]

{FoldL [[g]] Appe

{FoldL [[g]] Appe
{FoldL nil Append
{FoldL nil Append
= [a b1l 2 e g]

7 Sep 2007

[g]] Append [a b]}
Append {Append [a Db]

Append [a b 1 2]}

nd {Append [a b 1 2]

nd [a b 1l 2 e]}
{Append [a b 1 2 e]

[a b 1 2 e g]}

CS2104, Lecture 4

[1 2]}

[e]}}

(9] }}

81

Summary so far

Many operations can be partitioned into
o pattern implementing

recursion

application of operations
0 operations to be applied

Typical patterns
o Map
FoldL/FoldR
Filter

0
Q
o Sort
Q

7 Sep 2007

mapping elements
folding elements
filtering elements
sorting elements

CS2104, Lecture 4

82

Goal

Programming as an engineering/scientific
discipline

An engineer can

o understand abstract machine/properties

0 apply programming techniques
o develop programs with suitable techniques

7 Sep 2007 CS2104, Lecture 4 83

Summary

Computing with procedures
o lexical scoping

o closures

o procedures as values

o procedure call

Higher-Order Programming
o proc. abstraction
o lazy arguments
o genericity

o loop abstraction
o folding

7 Sep 2007 CS2104, Lecture 4

84

Reading suggestions

Chapter 1 and 3, Sections 1.9, 3.6 from [van
Roy,Haridi; 2004]

Exercises 2.9.1, 2.9.2, 1.18.6 from [van
Roy,Haridi; 2004]

7 Sep 2007 CS2104, Lecture 4 85

Thank you for your attention!

7 Sep 2007

CS2104, Lecture 4

86

Simple Example

local P in local Y in local Z in
Z=1
proc {P X} Y=X end
{P 7}

end end end

We shall reason that x, v and z will be bound
to 1

7 Sep 2007 CS2104, Lecture 4

87

‘ Simple Example

([(local P Y Z in
Z=1
proc {P X} Y=X end
{P 7}
end, J)],

)

= Initial execution state

7 Sep 2007 CS2104, Lecture 4

88

Simple Example

([(local P Y Z in
z=1
proc {P X} Y=X end
{P Z}
end, D)],

)

s Statement

7 Sep 2007 CS2104, Lecture 4

89

‘ Simple Example

([(local P Y Z in
Z=1
proc {P X} Y=X end
{P 7}
end, V)],

)

= Empty environment

7 Sep 2007 CS2104, Lecture 4

90

Simple Example

([(local P Y Z in
Z=1
proc {P X} Y=X end
{P Z}
end,)],

)

m Semantic statement

7 Sep 2007 CS2104, Lecture 4

91

Simple Example

([(local P Y Z in
/=1
proc {P X} Y=X end
{P Z}
end, J)],

)

s Semantic stack

7 Sep 2007 CS2104, Lecture 4

92

‘ Simple Example

([(local P Y Z in
Z=1
proc {P X} Y=X end
{P 7}
end, J)],

2)

x Empty store

7 Sep 2007 CS2104, Lecture 4

93

‘ Simple Example: 10cal

([(local P Y Z in
Zz=1
proc {P X} Y=X end
{P 2}

end, ©) 1,
)

= Create new store variables
= Extend the environment

7 Sep 2007 CS2104, Lecture 4

94

‘ Simple Example

([(z=1
proc {P X} Y=X end

(P 7}, {P=p, Y2y, 222} 1,
Py, 2}

7 Sep 2007 CS2104, Lecture 4

95

‘ Simple Example

([(z=1

proc {P X} Y=X end
{P 2}, {P"p, Y=Y, Z_’Z})]!

P, Y, Z})

= Split sequential composition

7 Sep 2007 CS2104, Lecture 4

96

Simple Example

([(z=1, {p=p, Yy, 222},
(proc {P X} Y=X end
(P 7}, {P=p, Y2y, 222} 1,
{p, y, z})

Split sequential composition

7 Sep 2007 CS2104, Lecture 4

97

Simple Example

([(proe {P X} Y=X end

(P 7}, {(P=p, Y2y, 222} 1,

{p, v, z=11})

Variable-value assignment

7 Sep 2007 CS2104, Lecture 4

98

Simple Example

([(proc {P X} Y=X end, {P—p, YV, z—2}),
({P Z}, {P=p, Y2y, 22}) 1,

{p, v, z=11)

Split sequential composition

7 Sep 2007 CS2104, Lecture 4

99

Simple Example

([(proc {P X} ¥Y=X end, {P—p, YV, z—2}),
({P 2}, {P=p, Y2y, z222}) 1,

{p, v, z=11)

Procedure definition

a
o formal argument X

Contextual environment {y— y}
Write procedure value to store

7 Sep 2007 CS2104, Lecture 4 100

Simple Example

([({p z}, {p=p, Y2y, 222}) 1,
{p= (proc {$ X} ¥=X end, {Y*y}),
Y, Z=1})

Procedure call: use p

Note: p is a value like any other variable. It is the
semantic statement (proc {$ X} Y=X end, {Y—})})

Environment
o start from {y = y}
o adjoin X - 2

101

7 Sep 2007 CS2104, Lecture 4

Simple Example

([(Y=X, {y=y, x=2}) 1,

{p=(proc {$ X} ¥Y=X end, {Y—’y}),

Y, Z=1})

Variable-variable assignment
o Variable for vy is y
o Variable for x is Z

7 Sep 2007 CS2104, Lecture 4

102

Simple Example

(L],
{p=(proc {$ X} ¥Y=X end, {Y—’y}),
y=1,z=1})

Voilal

The semantic stack is in the run-time state
terminated, since the stack is empty

7 Sep 2007 CS2104, Lecture 4 103

