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More on Concurrency
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Review of Last Lecture

Declarative concurrency
Mechanisms for concurrency
Streams

Demand-driven execution

By-Need triggers

0 execute computation, if variable needed

0 needs suspension by a thread

o requested computation is running in new thread

Lazy functions
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Overview

Stream Obiject

Thread Module and Composition
Soft Real-Time Programming
Agents and Message Passing
Protocols

Erlang
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Stream Object
accumulator

\U U o
proc {StreamObject S1 X1 ?T1}
case S1 of M|S2 then N X2 T2 in
{NextStateUMUXl Nﬁxﬁ}
Tl = N|T2 {StreamObject S2 X2 T2}

[] nil then Tl=nil end

end StreamObject :: [A], B, [C] > ()
NextState :: A,B, CLA-> ()

declare SO0 X0 TO
thread {StreamObject S0 X0 TO} end
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| Making Stream the Driver Common Operations on Thread

accumulator

input . output
proc {StreamObject ?S1 X1 ?T1} M|S2 {Thread.this} return thread id
S1=M|S2 {Thread.state T} return current state of T
local N X2 T2 injy | 1 4 {Thread.suspend T} suspend T
{NextState M X1 N X2} {Thread.resume T} resume T
Tl = N|T2 {Thread.prempt T} preempt T
{StreamObject S2 X2 T2} {Thread.terminate T} terminate T
end {Thread.injectException T} raise E in thread T
end {Thread.setPriority T P} set priority of T

{Thread.setThisPriority P} set priority of thread
declare SO0 X0 TO

thread {StreamObject SO0 X0 TO} end
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Common Property Operations

Thfead Opefations {Property.get priorities} get current priority ratios

{Property.put priorities set system priority ratios
p(high:X medium:Y) }
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Coroutine

] A coroutine is a nonpremptive thread

{P}
—_—
- ;
-
,, return
thread {P} end {Wait X}
> X=unit

C2={Spawn P}

{Resume C2} {Resume C2}

>

Coroutine

[ ..—>'

{Resume C1}

{Resume C1}
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T ork-Join for Threads

local X, X, X1 X, in
thread <stmtl> X;=unit end

thread <stmt2> X,=X, end

thread <stmtn> X =X, end
{Wait X_}

end '\

’ wait for all threads to complete through variable binding

Basic Mechanism for Coroutines

fun {Spawn P}
PId in
thread
Pid={Thread.this}
{Thread.suspend Pid}
{P}

end
PId Spawn :: (()=>()) > Id
end Resume :: 1d = ()

proc {Resume Id}
{Thread.resume Id}
{Thread.suspend {Thread.this}}
end
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Barrier Synchronization

list of threads

proc {Barrier Ps}
fun {Loop Ps L}
case Ps of P|Pr then M in
thread {P} M=L end
{Loop Pr M}
[] nil then L
end
end
S={Loop Ps unit}
in
{Wait S}

end v\\\\\\\\

’ wait for all threads to complete
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Soft Real-Time Programming

Real-time
o control computations by time
o animations, simulations, timeouts, ...

Hard real-time has firm deadlines, which have to be
respected all the time, without any exception (medical
equipments, air traffic control, ...)

Soft real-time is used in less demanding situations.
suggested time

no time guarantees

no hard deadlines as for controllers, etc.

Examples: telephony, consumer electronics, ...

[m]

0O O O
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The Time module

The Time module contains a number of useful
soft real-time operations:

o Delay

o Alarm

o Time

{Delay N} suspends the thread for N
milliseconds

Useful for building abstractions
o timeouts
o repeating actions
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The Time module

(Alarm N U} creates a new thread that binds
u to unit after at least v milliseconds.

Alarm can be implemented with peiay

{Time.time} returns the integer number of

seconds that have passed since the current
year started
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Soft Real-Time Programming. Example

functor
import
Browser (browse:Browse)
define
proc {Ping N}
if N == 0 then {Browse ’"ping terminated’}
else {Delay 500} {Browse ping} {Ping N - 1} end
end

in
{Browse ’"game started’}
thread {Ping 6} end
thread {Pong 6} end
end
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Soft Real-Time Programming. Example
'EJIEII

0z Browser

Browszer Selection Options

'game started!’
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Agents and

Message Passing Concurrency
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Client-Server Architectures

Server provides some service

0 receives message

o replies to message

o examples: web server, mail server, ...
Clients know address of server and use
service by sending messages

Server and clients run independently
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Client-Server Applications ...

With declarative programming, it is impossible
to write a client/server program where the
server does not know which client will send
the next message.

Observable nondeterministic behavior: the
server can receive information in any order
from two independent clients.

The server has only an input stream from
which it reads commands.
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The Message-Passing Concurrent Model | Common Features

Extends the declarative concurrent model by

adding one new concept, an asynchronous Agents

communication channel. o have identity mail address

Any client can send messages to the channel at o receive messages  mailbox

any time and the server can read all the o process messages ordered mailbox

messages from the channel (no limitations). o reply to messages  pre-addressed return letter
A client/server program may give different results

on different executions because the order of Now how to cast into programming language?

clients’ sends is not fixed.

Message-passing model is nondeterministic
and therefore no longer declarative.
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Peer-to-Peer Architectures Message Sending

Similar to Client-Server: Message data structure

o every client is also a server Address port
o communicate by sending messages to each other ,
, Mailbox stream of messages
We call all these guys (client, server, peer) , :
Reply dataflow variable in message
agent
In [van Roy, Haridi; 2004] book, this is called | Type :: Port |

portObject

message type

190ct2007 CS2104, Lecture 9 22 190ct2007 CS2104, Lecture 9 24



Ports

A port is an ADT with two operations:

o {NewPort S P} oOr equivalently p={NewPort S}:
create a new port with entry point (channel) p and
stream s.

o {Send P x}:append x to the stream corresponding
to the entry point p.

Successive sends from the same thread appear

on the stream in the same order in which they

were executed.

This property implies that a port is an

asynchronous FIFO (first-in, first-out)

communication channel.
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Port and its Stream

{Send P X} {NewPort P S}

____________________________________________________________

{Send P X} ~._S
I Stream

{Send P Xn} NewPort :: [X] > Port X

Send :: Port X, X >()
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Ports

Asynchronous: a thread can send a message
at any time and it does not need to wait for any
reply.

As soon as the message is in the
communication channel, the thread can
continue executing.

Communication channel can contain many
pending messages, which are waiting to be
handled.
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Example

declare S P
P={NewPort S}

{Browse S}

Displays initially s<future> (0r_)
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Example Semantics of Ports

Extend the execution state of the declarative model by
declare S P adding a mutable store u
P={NewPort S} This store contains ports, i.e. pairs of the form x : y,
where x and y are variables of the single-assignment
store (x is the channel’s name and y is the current last
position of stream).

The mutable store is initially empty.

{Browse S}

Execute {Send P a} The semantics guarantees that x is always boundto a
h name value that represents a port and that y is
Shows al|_<future> unbound.

The execution state becomes a triple (MST,o, ) (or
(MST, o, u, =) if the trigger store is considered).
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Example The Message-Passing Concurrent Model

declare S P
P={NewPort S}

{Browse S}

case Z of 222 thez _.. Semanhc stacks (threads)

A=l B=1

W=AV V=B[X
Execute {Send P b} X
P=pl C=p2 2Z
Shows alb|_<future>
Note that {send P a} and {send P b} arein Immoutabls store Mutable store

the same thread (smgle—aszmment) (ports)

190ct2007 CS2104, Lecture 9 30 190ct2007 CS2104, Lecture 9 32



The NewPort Operation

The semantics of ({Newport <X> <y>}, E) is:
o Create a fresh port name (also called unique

address) n.

o Bind E(<y>) and nin the store.

o If the binding is successful, then add the pair
E(<y>) : E(<x>) to the mutable store L.

o If the binding fails, then raise an error condition.
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The send Operation

The semantics of ({send <Xx> <y>},E) is:
o If the activation condition is true (E(<x>) is

determined), then:

If E(<x>) is not bound to the name of a port, then raise

an error condition.

If the mutable store contains E(<x>) : z, then:

o Create a new variable z0in the store.

o Update the mutable store to be E(<x>) : z0.

o Create a new list pair E(<y>) | z0 and bind z with it in

the store.

o If the activation condition is false, then suspend

execution.

190ct2007
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Question

declare S P
P={NewPort S}

{Browse S}

thread {Send P a} end
thread {Send P b} end

What will the Browser show?

Note that each {send P ..} iSin a separate
thread
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Question

declare S P
P={NewPort S}

{Browse S}

thread {Send P a} end
thread {Send P b} end

Which will the Browser show?
Either

o alb|_<future> 0Or
o blal_<future>

non-determinism: we can’t say what

190ct2007 CS2104, Lectute 9
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Answering Messages

Traditional view

Include the entry port »- of the sender in the
message:
{Send P pair (Message P’)}

Receiver sends answer message to e’

{Send P’ AnsMessage}
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Answering Messages

Do not reply by address, use something like
pre-addressed reply envelope
o dataflow variable!!!

{Send P pair (Message Answer) }

Receiver can bind answer!
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Port Objects

A port object is a combination of one or more
ports and a stream object.

This extends stream objects in two ways:

o First, many-to-one communication is possible: many
threads can reference a given port object and send
to it independently.

This is not possible with a stream object because it has to
know where its next message will come from.

o Second, port objects can be embedded inside data
structures (including messages).

This is not possible with a stream object because it is
referenced by a stream that can be extended by just one
thread.
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Port Objects. Distributed Algorithm

declare P1 P2 . Pn in

local S1 S2 Sn in
{NewPort S1 P1l}
{NewPort S2 P2}

{NewPort Sn Pn}

thread {RP S1 S2
end

The thread contains a recursive procedure rp that

reads the port streams and performs some action for
each message received.

Sending a message to the port object is just sending a
message to one of the ports.

Similar terms: agent, process (Erlang), active object

Sn} end
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A Math Agent

proc {Math E}
case E
of add (N M Answer) then Answer=N+M
[] mul (N M Answer) then Answer=N*M
[l int (Formula Answer) then
Answer = ..
end
end

Remark: answer is included in the stream’s element
X of {Send EntryPoint X}
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Making the Agent Work (Port Creation)

local S in
MP = {NewPort S}
proc {MathProcess Ms}
case Ms of M|Mr then
{Math M}
{MathProcess Mr}
end
end
thread {MathProcess S} end
end

MathProcess IS @ recursive procedure that reads the
port streams and performs some action for each
message received.
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Making the Agent Work (Sending a Message)

declare A B

thread % client 1
{Send MP add(2 3 A)}
{Browse A}

end

thread % client 2
{Send MP mul(2 3 B)}
{Browse B}

end

2 and B are two dataflow variables which will be
bound in port Mp
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Recall Higher-Order Construct

| ForAll :: {IX], X>0} > 0 |

proc {ForAll Xs P}
case Xs
of nil then skip
[] X|Xr then {P X} {ForAll Xr P}
end
end

Call procedure p for all elements in xs
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Smells of Higher-Order...

Using rora11, we have

proc {MathProcess Ms}
{ForAll Ms Math}

end

190ct2007

Making the Agent Work

declare MP in
local S in
MP = {NewPort S}

thread {ForAll S Math} end

end

190ct2007
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Making the Agent Work

declare MP in
local S in

MP = {NewPort S}

thread for M in S do {Math M} end end
end

The stream s is private (10ca1) to the port.
Math IS @ssociated to the port vp

mp and Math can become arguments of a
generic function.

190ct2007 CS2104, Lecture 9

Smells Even Stronger...

Programming with port objects can be
abstracted into a function

fun {NewAgent Process}

Port Stream | NewAgent :: {X>()} > Port X |

in
Port={NewPort Stream}
thread {ForAll Stream Process} end
Port

end

So, the previous port creation is equivalent with:
MP = {NewAgent Math}
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Why Do Agents/Processes Mattet?

Model to capture communicating entities Protocols
Each agent is simply defined in terms of how it

replies to messages

Each agent has a thread of its own

o no screw-up with concurrency

o we can easily extend the model so that each
agent has a state (encapsulated)

Extremely useful to model distributed

systems!
Summary so far Protocols
Ports for message sending Protocol: is a set of rules for sending and
o use stream (list of messages) as mailbox receiving messages
o port serves as unique address o programming with agents
Use agent abstraction Most well-known protocols:
o combines port with thread running agent o the Internet protocols (TCP/IP, HTTP, FTP, etc.)
o simple concurrency scheme o LAN (Local Area Network) protocols such as

Ethernet and DHCP (Dynamic Host Connection

Introduces non-determinism... and state!
Protocol), ...
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RMI (Remote Method Invocation)

It seems to be the most popular of the simple
protocols.

It allows an object to call another object in a different
operating system process, either on the same
machine or on another machine connected by a
network.

RMI is a descendant of the RPC (Remote Procedure
Call), which was invented in 1980, before object-
oriented programming became popular.

RMI became popular once objects started replacing
procedures as the remote entities to be called.

We assume that a “method” is simply what a port
object does when it receives a particular message.
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Differences between RPC and RMI

RPC RMI
Faster than RMI Is part of Java’s object-
Depends on the oriented approach
platform Allows multiple-concurrent
Has to convert the method invocation

arguments between Is portable (doesn’t depend
architectures so that on the operating system)
each computer can Good security system

use its native datatype To call outside methods,
RMI needs JNI, JDBC, RMI-
[IOP, RMI-IDL, etc.
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A client sends a request to a server and then waits for
the server to send back a reply.

C stands for client, S for server, idle means “available

to service requests”, suspended means “not available”.
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The Server as a Port Object

declare
proc {ServerProc Msg}
case Msg
of calc(X Y) then
Yy =X * X + 1.0
end
end

Server={NewAgent ServerProc}

The second argument v of calc is bound by the server.
The server computes the polynomial x * x + 1.0
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What 1s Newagent? (Reminder)

fun {NewAgent Process}
Port Stream
in
Port={NewPort Stream}
thread {ForAll Stream Process} end
Port
end
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The Client (using RMI)

declare
proc {ClientProc Msg}
case Msg
of work(Y) then
Y1 Y2 in
{Send Server calc (1.0 Y1)}
{Wait Y1}
{Send Server calc (2.0 Y2)}
{Wait Y2}
Y = Y1 + Y2
end
end

Client={NewAgent ClientProc}
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The Client as a Port Object 11

local X in
{Send Client work (X)}
{Browse X}

end

Difference between the client and server:

o The client definition references the server directly but the server
definition does not know its clients.

o The server gets a client reference indirectly, through the
argument Y, i.e. the dataflow variable that is bound to the
answer by the server.

o The client waits until receiving the reply before continuing.

57 190ct2007 CS2104, Lecture 9 39

What 1s wait?

{Wait x} suspends the thread until x becomes
determined, i.e. also called explicit synchronization on
variable x

declare Y
{ByNeed proc {$ X} X=1 end Y}
{Browse Y}
{Wait Y}
<statement>
Display v in the Browser.
To access v, the operation {wait v} will trigger the
producing procedure.
<statement> Will be executed only after vy is bound
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Characteristics of RMI -

2. Asynchronous EMI

{2 ealls)

In the previous example, all messages are
executed sequentially by the server.

In practice, some RMI implementations do
things somewhat differently, i.e. they allow
multiple calls from different clients to be
processed concurrently.

. A
e TIT LI

May use different languages and different OS. C 5
Asynchronous RMI The Asynchronous RMI Client
declare

Similar to RMI, except that the client continues proc {ClientProc Msg}
execution immediately after sending the case Msg
request of work(Y) then Y1 Y2 in

9 ] {Send Server calc (1.0 Y1)}
The client is informed when the reply arrives. {Send Server calc(2.0 Y2)}

. . Y = Y1 Y2
So, two requests can be done in rapid o '
succession. end
Motivation: If communications between client Client={NewAgent ClientProc}
and server are slow, then this will give a large tocal X in
’ {Send Client work (X)}

performance advantage over RMI. {Browse X}

end
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Characteristics of Asynchronous RMI

Message sends overlap. Client waits for both
results y1 and v2 before doing the addition
Y1+Y2.

The server is the same as with standard RMI.
It still receives messages one by one and
executes them sequentially.

Requests are handled by the server in the
same order as they are sent and the replies
arrive in that order as well.

190ct2007

RMI with Callback

Server may need to call back client to fulfill
request, e.g. check on some special values.

proc {ServerProc Msg}
case Msg
of calc(X ?Y Client) then X1 D in
{Send Client delta(D)}*\\\\\\\\\\\\\\
X1=X+D
Y =X * X+ 1.0

callback

end
end

Server={NewAgent ServerProc}
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RMI with Callback

proc {ClientProc Msg}
case Msg
of work(?Z) then Y in
{Send Server calc(10.0 Y Client)}
Z=Y+100.0
[l delta(?D) then D=1.0
end
end
Client={NewAgent ClientProc}
{Browse {Send Client work($)}}

Does this work? No! It deadlocks as server and

client waiting for each other.
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Solution — Use Thread

proc {ClientProc Msg}
case Msg
of work(?Z) then Y in
{Send Server calc(10.0 Y Client)
thread 7=Y+100.0 end
[l delta(?D) then D=1.0
end

end

add thread to allow
client to proceed.
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RMI with Callback (using thread)

calc
delta
calc (more)
finish client
) calc
client spawned server
thread

190ct2007 CS2104, Lecture 9 69

RMI with Callback (using continuation)

= Possible to avoid thread.

proc {ServerProc Msg}
case Msg

of calc (X Client Cont

then X1 D Y in
{Send Client delta (D)}
X1=X+D
¥=X*X+1.0 continuation
{Send Client Cont#Y} «———

end

end

Server={NewAgent ServerProc}
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' Solution — Using Continuation Record

proc {ClientProc Msg}
case Msg

of work(?Z) then Y in

{Send Server calc(10.0 Client cont (Z))}
[] cont (Z)#Y then Z=Y+100.0

[l delta(?D) then D=1.0

end

Client={NewAgent ClientProc}
{Browse {Send Client work($)}}

190ct2007 CS2104, Lecture 9 71

'RMI with Callback

(using continuation record)

calc
delta
calc (more)
cont
client server

190ct2007
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Erlang
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Erlang

Developed by Ericsson for telecoms
application.

Features : fine grain parallelism, extreme
reliability, hot code updates.

Functional core — dynamically typed strict
functional language.

Message-passing extension — processes
communicate by sending messages
asynchronously in FIFO order.
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Functions in Erlang

Uses pattern-matching and Prolog syntax

factorial (0) —-> 1;

factorial (N) when N>0 —-> N*factorial (N-1).
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Pattern-Matching with Tuple

area ({square, Side}) -> Side*Side;
area ({rectangle,X,Y}) —-> X*Y;
area ({circle, R}) —> 3.14159*R*R;

area ({triangle, A,B,C}) -> .. ;

tuple
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Concurrency and Message Passing

spawn (M, F,A) Creates a new process and
returns its ria . Note that M-module, F-initial
function, A-argument list.

Send operation (written as pid!msg) IS an
asynchronous message sending.

receive Operation removes message from a
mailbox. It uses pattern-matching to select
messages for removal

An Erlang Process

-module (areaserver)

—export ([start/0, loop/0]

start () —-> spawn (areaserver, loop, []).

spawn

. ———receive

loop () —> receive

{From, Shape} ->

From!area (Shape),

loop ()
end.
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send

Receive Construct

receive
Patternl [when Guardl] -> Bodyl;

PatternN [when GuardN] -> BodyNj;
[after Expr —> BodyT;]

end
This expression blocks until a message matching
one of patterns arrives or when timeout occurs
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Summary

Stream Object

Thread Module and Composition
Soft Real-Time Programming
Agents and Message Passing
Protocols

Erlang
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