
Programming Language Concepts, CS2104 (12th NOv 2007)
Tutorial 10 (Please prepare in advance.)

 Exercise 1. (WaitOr and WaitSome) One problem that occurs quite often in practice is
to wait until at least one out of two variables becomes bound. For this purpose, Oz
provides the procedure {WaitOr X Y}. It suspends until X or Y becomes bound. Write
an Oz procedure able to simulate {WaitOr …}.
For instance, Mozart provides the procedure {Record.waitOr R ?LI} which blocks
until at least one field of R is determined. It returns the feature LI of a determined field
and it raises an exception if R is not a proper record, that is, if R is a literal. For example,

{Browse {Record.waitOr a(_ b:1)}} displays b
{Browse {Record.waitOr a(2 b:_)}} displays 1
{Browse {Record.waitOr a(_ b:_)}} blocks.

Moreover, write a procedure {WaitSome Xs} that suspends the executing thread until at
least one variable from the list Xs becomes bound.

Exercise 2. (cells – reference and value) Explain what and why the following Oz
program will display:

declare
X = {NewCell 0}
{Assign X 5}
Y = X
{Assign Y 10}
{Browse {Access X} == 10}
{Browse X == Y}
Z = {NewCell 10}
{Browse Z == Y}
{Browse @X == @Y}

Exercise 3. (arrays) Write an Oz function which takes N as the input and returns the
array <1!, 2!, 3!, …, N!>, where N! means ‘factorial of N’ (that is, N!=1*2*…*N).

Exercise 4. (call by value and call by reference) Explain what and why the following
Oz program will display:

declare
proc {F A}
 A:=@A+1
 A:=@A*@A
end
proc {G A}
 E={NewCell A}
in
 E:=@E+1
 E:=@E*@E

end
local
 C={NewCell 0}
 D={NewCell 1}
in
 C:=5
 D:=6
 {Browse @C#@D}
 {F C}
 {G @D}
 {Browse @C#@D}
end

Exercise 5. Consider the following Oz procedures that can be used to capture
relationships between people:

proc {Male X}
 choice X=richard | X= john | … end
end
proc {Female X}
 choice X=susan | X=amy | … end
end
proc {Parent X Y} // X is the parent of Y
 choice X=susan Y=john | X=richard Y=john | … end
end

Based on the above relations, we can define a new procedure which determines if X is a
son of Y, as follows:

proc {Son X Y} // X is the son of Y
 {Parent Y X} {Male X}
end

In a similar fashion, write new non-deterministic procedures for the following
relationships.

proc {Mother X Y} // X is the mother of Y

proc {GrandPa X Y} // X is the grandfather of Y

 proc {Brother X Y} // X is a brother of Y

proc {Uncle X Y} // X is a uncle of Y

proc {Descendant X Y} // X is descendant of Y

