
Programming Language Concepts, cs2104  
Tutorial 10. Answers 
 
Exercise 1. (WaitOr and WaitSome) One problem that occurs quite often in practice is 
to wait until at least one out of two variables becomes bound. For this purpose, Oz 
provides the procedure {WaitOr X Y}. It suspends until X or Y becomes bound. Write 
an Oz procedure able to simulate {WaitOr …}. 
For instance, Mozart provides the procedure {Record.waitOr R ?LI} which blocks 
until at least one field of R is determined. It returns the feature LI of a determined field 
and it raises an exception if R is not a proper record, that is, if R is a literal. For example,  
 
{Browse {Record.waitOr a(_ b:1)}} displays b 
{Browse {Record.waitOr a(2 b:_)}} displays 1 
{Browse {Record.waitOr a(_ b:_)}} blocks.  
 
Moreover, write a procedure {WaitSome Xs} that suspends the executing thread until at 
least one variable from the list Xs becomes bound. 
 
Solution.  
The idea is to create a thread for X and Y that suspends until one of them is bound. If it 
becomes bound, the thread binds a variable shared among these two threads (say B). 
Execution then continues as soon as B is bound. 
 
declare 
proc {WaitOr X Y} 
B in 
   thread 
      {Wait X} 
      B=true 
   end 
   thread 
      {Wait Y} 
      B=true 
   end 
   {Wait B} 
end 
 
The idea is to create a thread for each element of list Xs that suspends until the element is 
bound. If it becomes bound, the thread binds a variable shared among all threads (here Y). 
Execution then continues as soon as Y is bound: 
 
declare 
proc {WaitSome Xs} 
  Y 
in 
  {ForAll Xs proc {$ X} thread {Wait X} Y=true end end}  
  {Wait Y} 



end 
 
Exercise 2. (cells – reference and value) Explain what and why the following Oz 
program will display: 
 
declare 
X = {NewCell 0} 
{Assign X 5} 
Y = X 
{Assign Y 10} 
{Browse {Access X} == 10} 
{Browse X == Y} 
Z = {NewCell 10} 
{Browse Z == Y} 
{Browse @X == @Z} 
 

Solution. It will display true, true, false, true since X and Y refer to the same cell, 
while Z has a different address (but the same integer stored inside). 
 

Exercise 3. (arrays) Write an Oz function which takes N as the input and returns the 
array <1!, 2!, 3!, …, N!>, where N! means ‘factorial of N’ (that is, N!=1*2*…*N).  
 
Solution.  
declare 
fun {MakeFactorialArray N} 
 A = {NewArray 1 N 1} 
in 
 for I in 2..N do 
   A.I := A.(I-1)*I 
 end 
 A 
end 
proc {DisplayArray A N} 
   for I in 1..N do 
      {Browse A.I} 
   end 
end 
{DisplayArray {MakeFactorialArray 5} 5} 
 
Another way to display an array is to translate it into a record, then use the records' 
display. Here it is this solution: 
 
{Browse {Array.toRecord a {MakeFactorialArray 5}}} 
 
will display a(1 2 6 24 120). 
 
Exercise 4. (call by value and call by reference) Explain what and why the following 
Oz program will display: 
 



declare 
proc {F A} 
   A:=@A+1 
   A:=@A*@A 
end  
proc {G A} 
   E={NewCell A} 
in 
   E:=@E+1 
   E:=@E*@E     
end 
local 
   C={NewCell 0} 
   D={NewCell 1} 
in 
   C:=5 
   D:=6 
   {Browse @C#@D} 
   {F C} 
   {G @D} 
   {Browse @C#@D} 
end 
 
Solution. It will display 5#6, 36#6 since C is passed by variable (reference) and D is 
passed by value. 
 
Exercise 5. Consider the following Oz procedures that can be used to capture 
relationships between people: 

proc {Male X} 
 choice X=richard | X= john | … end 
end 
proc {Female X} 
 choice X=susan | X=amy | … end 
end 
proc {Parent X Y}  // X is the parent of Y 
 choice X=susan Y=john | X=richard Y=john | … end 
end 

Based on the above relations, we can define a new procedure which determines if X is a 
son of Y, as follows: 

proc {Son X Y}  // X is the son of Y 
 {Parent Y X} {Male X} 
end 

In a similar fashion, write new non-deterministic procedures for the following 
relationships. 
 

proc {Mother X Y}  // X is the mother of Y 
 

proc {GrandPa X Y}  // X is the grandfather of Y 
 



     proc {Brother X Y}  // X is a brother of Y 
 

proc {Uncle X Y}  // X is a uncle of Y 
 

proc {Descendant X Y}  // X is descendant of Y 
 
Solution.  
proc {Mother X Y}   
   {Parent X Y} {Female X} 
end 
 
proc {GrandPa X Y} 
   Z in 
   {Parent X Z} {Parent Z Y} {Male X} 
end 
 
proc {Brother X Y} 
   Z in 
   {Parent Z X} 
   {Parent Z Y} 
   {Male X} 
   if X==Y then fail end 
end 
 
proc {Uncle X Y} 
   P in 
   {Brother X P} 
   {Parent P Y} 
end 
 
proc {Descendant X Y} 
   choice 
      {Parent Y X} 
   [] 
      Z in  
      {Parent Y Z} 
      {Descendant X Z} 
   end 
end 


