
Programming Language Concepts, CS2104, 3rd Sept 2007
Tutorial 2 (Please attempt questions before coming to tutorial)

Exercise 1. (Finding an Element in a List) Give a definition of {Member Xs Y} that
tests whether Y is an element of Xs. For this assignment you have to use the truth values
true and false. The equality test (that is ==) returns truth values and a function
returning truth values can be used as condition in an if-expression. For example, the call
{Member [a b c] b} should return true, whereas {Member [a b c] d} should
return false.

Exercise 2. (Taking and Dropping Elements) Write two functions {Take Xs N} and
{Drop Xs N}. The call {Take Xs N} returns the first N elements of Xs whereas the
call {Drop Xs N} returns Xs without its first N elements. For example, {Take [1 4 3
6 2] 3} returns [1 4 3] and {Drop [1 4 3 6 2] 3} returns [6 2].

Exercise 3. (Zip and UnZip) The operation a # b constructs a tuple with label ’#’ and
fields a and b which is also known as a pair. We can use it to implement lists-of-pairs,
e.g [a#1 b#2 c#3]. A different view of this data structure is known as a pair-of-lists,
e.g [a b c]#[1 2 3]. Two important functions that convert list-of-pairs to pair-of-lists
and vice versa are Zip and UnZip.

a) Implement a function Zip that takes a pair Xs#Ys of two lists Xs and Ys (of the
same length) and returns a pairlist, where the first field of each pair is taken from
Xs and the second from Ys. For example, {Zip [a b c]#[1 2 3]} returns the
pairlist [a#1 b#2 c#3].

b) The function UnZip does the inverse, for example {UnZip [a#1 b#2 c#3]}
returns [a b c]#[1 2 3]. Give a specification and implementation of UnZip.

Exercise 4. (Finding the Position of an Element in a List) Write a function
{Position Xs Y} that returns the first position of Y in the list Xs. The positions in a
list start with 1. For example, {Position [a b c] c} returns 3 and {Position [a
b c b] b} returns 2.
Try two versions:
1) one that assumes that Y is an element of Xs and
2) one that returns 0, if Y does not occur in Xs.

Exercise 5. (Arithmetic Expressions Evaluation) Suppose that you are given an
arithmetic expression described by a tree constructed from tuples as follows:

1. An integer is described by a tuple int(N), where N is an integer.
2. An addition is described by a tuple add(X Y), where both X and Y are arithmetic

expressions.
3. A multiplication is described by a tuple mul(X Y), where both X and Y are

arithmetic expressions.
Implement a function Eval that takes an arithmetic expression and returns its value. For
example, add(int(1) mul(int(3) int(4))) is an arithmetic expression and its
evaluation returns 13.

Exercise 6. Abstract Machine Concepts : Lecture 3 cover the definitions of the
following declarative programming concepts: statement, value expression, environment,
semantic statement, semantic stack, single-assignment store, execution state, and
computation. There exists a visual abstract machine, called VamOz (Visual Abstract
Machine for Oz), which can be freely downloaded from
http://www.imit.kth.se/~schulte/misc/vamoz.html, which is executing kernel language
programs as defined in the book Concepts, Techniques and Models of Computer
Programming by Peter Van Roy and Seif Haridi. VamOz has been developed by Frej
Drejhammar and Dragan Havelka with contributions from Christian Schulte. The idea is
to give students a tool with which they can increase their understanding of how the
abstract machine computes. VamOz has been used successfully in 2003 in the Datalogi II
course taught by Christian Schulte at KTH. The language supported by VamOz is mainly
the kernel language as described in Section 2.3 together with threads as introduced in
Section 4.1 of the above mentioned book. Oz files loaded in the evaluator are
automatically converted into kernel syntax. The following primitive operations are
supported by VamOz: record operations (Arity, ., Label), equality tests (==, \=), order
tests (>, <, >=, =<), operations on numbers (+, -, *, /, div, mod), type tests
(IsProcedure).

Using the visual abstract machine, execute the following Oz programs. Note the semantic
stack size (called in VamOz, the “thread stack”) during the execution of some specific
calls. Compare and explain the thread stack size in case of FactProc and FastFact.

a) local X in
 X=1
 local X in X=2 end
 X=1
 end

b) local B in
 if B then skip else skip end
 end

c) local B in
 B = false
 if B then skip else skip end
 end

d) local FactProc R in
 proc {FactProc N ?Res}
 if N==0 then Res=1
 else local M in
 {FactProc N-1 M}
 Res=N*M
 end
 end
 end
 {FactProc 3 R}
 end

e) local FactAux FastFact X in
 fun {FactAux N M}
 if N==0 then M
 else {FactAux N-1 M*N}
 end
 end
 fun {FastFact N}
 if N>=0 then {FactAux N 1}
 end
 end
 X = {FastFact 3}
 end

