
Proc. 18th Conf. on Software Engineering Education and Training (CSEE&T), April 05, Ottawa 

Teaching an Advanced Design, Team-oriented  
Software Project Course 

 
 

Stan Jarzabek and Pin-Kwang Eng 
Department of Computer Science, School of Computing 

National University of Singapore 
{stan,engpk}@comp.nus.edu.sg 

Abstract 
Students learn about design principles and “best practices” in many courses. However, 

small scale assignments do not give enough opportunity for students to appreciate the value 
of software design principles or even to learn how to apply principles in practice. To fill the 
gap between theoretical and experiential knowledge, we introduced a team-based project 
course focused on design and implementation phases of the software development lifecycle. 
We teach design principles and team work in problem-based way, through architectural 
concepts and iterative development process. The product students build must meet stated 
quality requirements in terms of reliability, reusability and documentation.  We trust this kind 
of the course is essential in curricula as it allows students better absorb knowledge learned in 
other software engineering courses. Such course also plays a role in  better preparing 
students for industrial work. We describe a teaching method, course infrastructure and 
lessons learned over three years of teaching of our course. Based on experiences, we 
postulate and motivate the need for teaching at least two project courses in undergraduate 
curricula, one dealing with design and process issues, and the other focused on unstable 
requirements.  

 
1. Introduction 

The need for teaching project-oriented courses in engineering disciplines has been widely 
recognized [7]. The motivation for teaching software engineering project courses is to better 
prepare students for industry projects. The ultimate goal is that fresh graduates not only can 
faster contribute to industrial projects, but can also play the role of agents transferring 
principles and “best practices” into industry. Project courses are key means to achieve this 
ambitious goal.  

Project courses emphasize team work, systematic development based on “best practices”, a 
rigorous development process, communication skills and other qualities that matter in 
industrial projects but cannot be effectively taught in assignment-based courses or  acquired 
in industrial attachments. To meet different expectations, a number of models for project 
courses have been proposed, ranging from projects proposed/supervised by faculty members, 
to projects done as part of a software engineering course, and to stand-alone project courses. 
In this paper, we focus on stand-alone team-based project courses taught in the framework of 
a university, as opposed to industrial attachments. Though there is still much variation among 
such courses, we can distinguish two major trends: Courses that emphasize problems of fuzzy 
and changing requirements, and courses that focus on the design and rigorous development 
process.  

Unstable requirements and software design are not only the two hallmarks of software 
development, but also hard and wicked problems [2], that are difficult to teach  in the frame 
of a single course. Therefore, in courses that attempt to expose students to the reality of fuzzy 
and changing requirements, the development phase tends to be less structured and rigorous. 

 1



Proc. 18th Conf. on Software Engineering Education and Training (CSEE&T), April 05, Ottawa 

On the other hand, courses that emphasize design principles, “best practices” and a rigorous 
process are usually well-structured, but use a relatively stable set of requirements. We believe 
that ideally students should take at least two project courses in the undergraduate education, 
one dealing with design and process issues, and the other focused on unstable 
requirements. To observe and understand the role of design principles, the first course 
should limit factors that make application of principles particularly difficult. In this 
paper, we describe a project course that emphasizes the learning of design principles and 
“best practices” in preparation for the second course that deals with fuzzy/unstable 
requirements.  

Students learn about design principles and “best practices” in many courses. However, 
small scale assignments do not give enough opportunity for students to appreciate the value of 
software design principles or even to learn how to apply principles in practice. To fill the gap 
between theoretical and experiential knowledge, we introduced a team-based project course 
focused on design and implementation phases of the software development lifecycle. We 
teach design principles and team work in problem-based way, through architectural concepts 
and iterative development process. In the paper, we describe a teaching method, course 
infrastructure and lessons learned over three years of teaching of our course.  

The paper is organized as follows: In the next two sections, we discuss the rationale and 
overview of our project course. A tool environment is described in Section 4. In the 
remaining sections, we discuss evaluation of students’ projects, provide course statistics and 
assess results so far. 
 
2. Background 

At the National University of Singapore (NUS), we experimented with various approaches 
to teaching project courses. Although our students participated in the industrial attachment 
program and did projects proposed by faculty members, industry surveys were consistently 
signaling the same problems related to weak development and communication skills, and 
generally slow start in industrial projects. When exposed to real world pressures, our students 
did not know how to take advantage of what they had learned. Students tended to perceive 
principles as obstacles rather than tools that can help them better complete the project work. 
Assignments in programming courses involve small programs. For example, if 1-2 students 
working closely together can develop a program in a couple of days and the assignment 
requires them to define an architecture and interfaces, students will do so just to satisfy 
assignment requirements, not because there is a real need for those artifacts in the context of 
assignment’s practical goals. The value of most of the principles can be only appreciated 
when it comes to large programs, developed by teams, when we need to understand different 
program parts separately, split the job into tasks that are completed in a fairly independent 
way and develop a product incrementally rather than in one shot. 

Industrial attachments offer an invaluable experience, but not all the companies expose 
students to “best practices” or let student teams go through the whole development lifecycle. 
University project courses organized in ad hoc way carry heavy workload for both instructors 
and students, and, at the end, students do not learn enough to make the effort worthwhile. 
Projects tend to be focused on specific research interests of a supervisor and only few 
supervisors will be really concerned with rigorous software development based on “best 
practices”. 

With the above experiences, we took a fresh look on what kind of practical experience 
would be most beneficial for our students. Given the difficulties of teaching a rigorous 
development in the frame of a project that also deals with fuzzy/unstable requirements, we 
opted for two courses.  The first course is based on a business application, with emphasis on 

 2



Proc. 18th Conf. on Software Engineering Education and Training (CSEE&T), April 05, Ottawa 

requirement elicitation, with fuzzy and incomplete requirements given to students, and 
unexpected changes of requirements. Students spend much time on prototyping to validate 
user requirements, design the user interface and the database. The second course, CS3215, 
focuses on advanced design and rigorous process. The application domain guarantees 
challenging design problems, emphasizes the role of software architecture and component 
interfaces, and involves complex data structures and algorithms. The problem is selected and 
scoped in such a way that students cannot meet the project goals without applying software 
engineering principles and “best practices” that we recommend to them. The course aims at 
enhancing skills related to communication and product quality in view of those challenges. In 
the remaining part of the paper, we discuss CS3215 in details. 
 
3. An overview of CS3215 

The project is delivered in five phases, comprising requirements analysis and architecture 
design, followed by three development iterations. Iterative development (based on Unified 
Process [3]) and software architecture are the key concepts shaping the project and the key 
means to achieve teaching goals of our course.   

The project course starts with 10 lectures during which a chief instructor motivates 
students, clarifies course objectives, explains the programming problem, project methodology 
and the development process. Students do the project in teams of six students. Teams are 
further divided into two groups of three students. Each team is assigned a one-hour slot per 
week for consultation with a supervisor. Supervisors – a chief instructor and teaching 
assistants - are intimately familiar with all the technical aspects of the project, and share a 
common vision of the project course objectives.  

Students spend two weeks on problem analysis and two weeks on architectural 
specifications.  At the same time, they develop a throw-away prototype. A programming 
problem – a software tool called Static Program Analyzer, SPA for short – has been carefully 
selected to allow the two groups to work on the two subsystems in a fairly independent way. 
We explain subsystem-level SPA decomposition to the students, and students’ task is to 
follow up with component-level decomposition and specifications of major component 
interfaces. Without proper definition of the interfaces it is virtually impossible to integrate the 
two subsystems. At the same time, the interface is complex enough so that some changes and 
refinements of interfaces are inevitable during development iterations. To cope with that, 
students must work together during architecture design and also meet on regular basis during 
development. To effectively communicate in a team, students learn how to schedule meetings 
and how to write documentation that is understandable to other team members.  

Students develop the project in iterations. The iterative development helps students tackle 
project difficulties one by one, applying principles of separation of concerns, abstraction  and 
refinement. 

Program reliability is emphasized throughout the project. High reliability is achieved by 
reviews and comprehensive testing. We expect program reliability close to industry standards. 
Students are  advised to allocate enough time for test planning and testing, to make  unit 
testing an integral part of development and to do integration  testing and system testing often, 
at least at the end of each of the development  iterations.  

We give students a Project Handbook that includes problem  description, compendium of 
recommended software engineering practices  for the project, sample solutions illustrating 
how we expect them  to approach design problems and technical tips. At the end of the 
course, students write a report, present their solutions and their programs are tested for errors 
with an auto-tester running some 250 test cases. 

 3



Proc. 18th Conf. on Software Engineering Education and Training (CSEE&T), April 05, Ottawa 

We developed a Project Infrastructure for efficient delivery of the project course. The 
Project Infrastructure consists of handouts (a Project Handbook, assignments, and tools’ 
documentation), lecture notes, and tool environment (configuration management, testing and 
modeling tools).  

 
4. A tool environment 

One of the key components of our Project Infrastructure is a tool environment 
consisting of a set of open source testing, source code control, build and documentation 
tools. 
 
4.1. Introducing the tools to our students 

We wrote short tutorials to help students install and use the tools. A standard 
documentation for the tools targets at a wide range of audiences, application domains and 
computing environments. Our tutorials, on the other hand, highlight tools from the 
perspective of our project, complementing rather than replacing the standard tool 
documentation, and providing our students with a quick start for tool usage. 

We also introduced compulsory training lab sessions, conducted before the teams started 
their actual development work. These lab sessions aimed to motivate the students to use tools 
and to shorten the tool learning curve. Overall, we found this approach effective as more 
teams adopt the tools for their development work. We also observe that some teams will even 
go to the extent of developing additional tools for their projects. Such teams show a high level 
of initiative and desire to produce a high quality product and we reward them for such effort. 

 
4.2. Recommended tools for the project course 

Students use four categories of tools for the project, namely testing tools, source 
code control tools, build tools and documentation tools. The implementation language 
for the project is either Java or C++, for which there are plenty of good tools in each 
category. 

Testing tools. Reliability is one of the key qualities we look for in the project course 
and students do much testing to meet the reliability requirements. Students use JUnit 
[11] for Java and CppUnit [9] for C++. Even though we do not introduce tools for 
integration or system testing, many teams come up with their own integration and 
system testing tools. 

Source code control systems. Students use the Concurrent Version System (CVS) [10] to 
manage multiple versions of the source code created during the project. CVS provides 
record keeping (i.e., revision control) as well as facilitates collaboration. We got very 
positive feedback from teams who have adopted CVS. To them, CVS has become an 
indispensable tool, one they know they cannot do without for programming in the large. 

Build tools. Build tools are used to automate the build [2], test and deployment process in a 
large project. For Java, students use Apache Ant [8]. Ant is easily extensible using Java 
classes and can automate the running of JUnit test suites. This is especially important for 
regression testing when all the test suites have to be re-run after making some changes to the 
system. For C++, students use the make utility [12] which is widely used in many C/C++ 
projects. 

Other tools. For documentation, students use Javadoc and Doxygen [13] for program 
documentation in Java and C++, respectively, and ArgoUML [14] for drawing UML 

 4



Proc. 18th Conf. on Software Engineering Education and Training (CSEE&T), April 05, Ottawa 

diagrams. We also introduce additional tools such as graphical toolkits, advanced data 
structures and analysis tools [15]. However, we discourage the use of Integrated 
Development Environments (IDEs) unless all the team members are familiar with the 
IDEs they want to use. This is because we find that students end up spending more time 
learning and solving problems related to the IDE than problems of the project.  

Before we end this section, we would like to comment on plagiarism which is a great 
concern in project courses. We adopted a clone detection tool CCFinder [5] to find cases of 
copied solutions. CCFinder is a token-based tool that can work with different programming 
languages. CCFinder is highly parameterized so that it can be customized to the clone 
detection task at hand. A visual interface called Gemini displays clone statistics in graphical 
form which allowed us to eliminate false positive clones – that is clones not indicating 
plagiarism - such as library classes. We think that availability of automated clone detection 
techniques can deter plagiarism of code to a great extent. It cannot prevent students from 
copying analysis and design solution, though. However, we notice that such cases do not 
happen often and they immediately show during consultations. 
 
5. Evaluation of students’ projects 

Students’ projects are evaluated based on the scope of the program functionality 
implemented, programs’ quality attributes (reliability, reusability, extensibility and the 
efficiency of a query evaluation strategy), and the quality of project documentation.  

At the end of the project course, each team is given one hour to present their work and to 
complete a final system testing.  One test run, consisting of 200 to 300 test cases covering a 
large set of functionalities, is executed for each team. Important information such as failed 
cases, exceptions and timeouts (when the time taken to evaluate a query does not meet the 
time limit we set) are captured. Any test cases that failed are then re-run and the results 
are verified manually. Students are allowed to give explanations of what went wrong if 
they know the reason. Hence, the final testing will give us an objective score on the 
reliability of the students’ programs.  

To facilitate the final system testing, we developed a tool called AutoTester to 
automate testing of students’ programs. The AutoTester works with students’ programs 
according to a client/server architecture concept: The AutoTester - the server - reads a 
set of test cases (program queries in our case) and then repeatedly sends queries to a 
student’s SPA program - the client. The SPA evaluates the query and returns the results 
back to the AutoTester for verification. To minimize the problems that might occur 
during the final testing, a trial run is conducted for each team prior to the final testing. 
This not only helps to familiarize the students with the testing procedures but also 
highlights any problems the team has when using the AutoTester. 
 
6. Project course statistics 

We present some statistics to give a reader a better idea of our course. We gathered 
statistics from two offerings of the course, in which students used Java and C++, respectively. 

6.1. Errors in implementation 

Figure 1 and Figure 2 illustrate the distribution of errors found in the final testing. 
An error is either a unique failed case, an exception or a timeout. For each team, we 
show the number of each type of errors encountered during the final testing. 

From the figures, we can see that in general, most teams manage to keep their total 
number of errors below 10. We believe that our relentless emphasis on reliability 

 5



Proc. 18th Conf. on Software Engineering Education and Training (CSEE&T), April 05, Ottawa 

manage to drive home an important point to our students – that testing is important in 
any large scale software development. We also make the following observations. First, 
we find that in most teams, at least one unique failed case is attributed to the team’s 
misunderstanding of the specification. Some teams purposely imposed their own 
restrictions on the project to reduce its complexity, failing to meet our project 
requirements. Second, programs that are implemented in Java have fewer total errors 
because Java is frequently used for programming assignments in most courses in our 
university and hence the students are more proficient in using Java than C++. Finally, 
C++ programs tend to have many timeouts but few exceptions. We believe that lack of 
error checking mechanisms in C++ forced our students to be more conscious about 
error/exception handling and recovery when implementing in C++, resulting in fewer 
exceptions. However, as most of our students are exposed to C++ for the first time, they 
tend to code in a very inefficient way, resulting in more timeouts. 

0
2
4
6
8

10
12

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Teams

er
ro

rs
 fo

un
d

failed cases exceptions timeouts

Figure 1. Distribution of errors  
(Java programs) 

0
5

10
15
20
25

1 2 3 4 5 6 7 8 9 10 11 12 13
Teams

er
ro

rs
 fo

un
d

failed cases exceptions timeouts

Figure 2. Distribution of errors 
(C++ programs) 

6.2. Program size 

Figure 3 and Figure 4 illustrate the distribution of program sizes in thousands of lines of 
code (KLOC). The mean size is 8.9 KLOC and the standard deviation is 3.1 KLOC for Java 
programs. For C++ programs, the mean size is 9.7 while the standard deviation is 2.8 KLOC.  

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Teams

K
LO

C

 

Figure 3. Program size  
(Java programs) 

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10 11 12 13
Teams

K
LO

C

 

Figure 4. Program size  
(C++ programs) 

Sometimes, by inspecting program metrics, we could spot cases of unusually good or bad 
design. Notice that the Java program developed by the second team was much larger than the 
rest. Upon investigation, we found that it was an instance of a bad programming practice: 
Rather than developing a few generic methods to handle the various types of queries, this 
team created one method for each query type. As the number of query types is large, this 

 6



Proc. 18th Conf. on Software Engineering Education and Training (CSEE&T), April 05, Ottawa 

resulted in 132 methods (totaling 10 KLOC) for just one of the classes alone, with much code 
duplication across methods. Finally, we observe that the C++ programs are generally larger 
than the Java programs. This is due to the fact that C++ programs need extra code to be 
written to perform runtime checks, but also because students still lack enough C++ skills to 
come up with short and elegant detailed design solutions. 
 
7. Results so far 

We have been offering the CS3215 project course in both terms for last three years, to 80-
130 Computer Science students each term. We see a difference in the way students deal with 
team-based software development at the end of the project as compared to their  approach at 
the beginning of the course. Students appreciate the role of software architecture, learn how to 
communicate in terms of interfaces, how to split the project work and document the work 
products in a clear way, understandable to other teammates. Most of the teams become very  
much involved in the project and motivated to work hard in order to  deliver a quality 
product. Though in this course we make little effort  to emulate the real world, we believe 
students learn some essential skills that help them to deal with real world project challenges 
in a systematic rather than chaotic way.  

Improving communication skills is the major concern and the focal point in  our project 
course. The ability to express solutions at the concept level, to  properly document design, 
code, test plans and other program artifacts,  to describe interfaces and to use assertions - are 
all related to  communication skills. So is the ability to prepare and conduct team  meetings in 
an effective way. Communication skills integrate essential  human and technical aspects of 
software development. As students do not  have enough opportunity to develop 
communication skills in assignment-based courses, it is the major challenge for the project 
course to  address this issue. We believe our course gives students ample opportunity to 
experiment with a wide range of  techniques related to mastering communication skills.   

The Project Infrastructure plays a critical role in achieving teaching goals. It helps students 
learn about software tools in short time and helps instructors in evaluating program solutions. 
At many universities, project courses are offered to a large population of students. A common 
problem is to find enough faculty members and teaching assistants qualified for the job. It 
takes a long time before teaching assistants can provide useful advice to student teams. Our 
approach to teaching the project course and the Project Infrastructure alleviates these 
problems. The Project Handbook and Infrastructure communicate to the students “what and 
how” of the project. They are a repository of project information that is shared among 
instructors, shortening the learning time before the new instructors can effectively advice 
student teams. The Project Handbook and Infrastructure can be used “as is” or customized to 
account for specific goals, student audiences and specific qualities deemed important in a 
given offering of a project course.  

In summary, we found our approach to teaching a project course effective in (1) enhancing 
students’ skills related to team work, communication and applying principles and “best 
practices” in-the-large, and (2) in dealing with practical problems related to teaching a project 
course for a large population of students. 

8. Conclusion 
If the main role of universities is to teach fundamental concepts then the role of project 

courses is to teach how to apply those concepts in large-scale team-based software 
development. To fill the gap between theoretical and experiential software engineering 
knowledge, we introduced a team-based project course focused on design and implementation 
phases of the software development lifecycle. We adopted a rather formal approach to 

 7



Proc. 18th Conf. on Software Engineering Education and Training (CSEE&T), April 05, Ottawa 

teaching this new  project course. We teach design principles and team work in problem-
based way, through architectural concepts and iterative development process. We conduct the 
project course in such a way that it is impossible for  students to achieve the project goals 
unless they follow the path of “best practices” we are showing to them. In the paper, we 
described a teaching method, course infrastructure and lessons learned over three years of 
teaching of our course.  

Unstable requirements and software design are not only the two hallmarks of software 
development, but also hard and wicked problems [2]. They are inter-related in subtle ways 
which, however, may have profound impact on the project success or failure: On one hand, 
tensions arise when rigid and premature design structures become restrictive to frequent and 
vast changes triggered by evolving requirements. On the other hand, ad hoc and poor design 
hinders development and maintenance of complex systems. We believe that, ideally, students 
should take at least two project courses in the undergraduate education, one dealing with 
design and process issues, and the other focused on unstable requirements. To observe 
and understand the role of design principles, the first course should limit factors that 
make application of principles particularly difficult. Having understood how principles 
work in a relatively “clear water” situation, in the second project course,  we can more 
realistically expect students to work with unstable requirements (e.g., by applying agile 
methods [1]), without steering their projects into the chaos, with little educational value 
gained at the end.    

9. Acknowledgments 
Many concepts for our project course emerged from research collaboration with Ulf 

Pettersson, STE Electronics Pte Ltd. Khoo Siau Cheng contributed many ideas and 
improvements. Seow Jun Ling computed course statistics shown in Figures 1-4. Wang Bing 
helped in technical arrangements. Damith Chatura Rajapakse adopted CCFinder for detecting 
plagiarism. We thank  Katsuro Inoue and Toshihiro Kamiya for letting us use CCFinder and 
for many useful hints. 

References 
[1] AgileAlliance http://www.agilealliance.org/home 

[2] Armarego, J. Advanced Software Design: a Case Study in Problem-based Learning,” Proc. 15th Conf. on 
Software Engineering Education and Training, CSEET’02, Covington, USA, Feb. 2002,  

[3] Jacobson, I., Booch, G. and Rumbaugh, J. The Unified Software Development Process, Addison-Wesley, 1999 

[4] Jarzabek, S. (editor), “Teaching Software Project Courses” (special issue, 13 papers), Forum for Advancing 
Software Engineering Education, Vol 11, No 6, http://www.cs.ttu.edu/fase/v11n06.txt, June 2001 

[5] Kamiya, T., Kusumoto, S., and Inoue, K. “CCFinder: A multi-linguistic token-based code clone detection 
system for large scale source code”, IEEE Trans. Software Engineering, 2002, 28(7): pp. 654-670 

[6] Robillard, P. “Teaching Software Engineering through a Project-Oriented Course,” Proc. Conf. on Software 
Engineering Education, CSEE’96, 1996, pp. 85-94 

[7] Panel Discussion “Learning Objectives for Engineering Education Laboratories”, Session F1D, Proc. Frontiers 
in Education, p. F1D-1, Nov 2002 

[8] Apache Ant. http://ant.apache.org 

[9] CppUnit. http://sourceforge.net/projects/cppunit. 

[10] Concurrent Version System. http://www.cvshome.org. 

[11] JUnit. http://www.junit.org. 

[12] GNU make. http://www.gnu.org/software/make. 

[13] Doxygen. http://www.stack.nl/~dimitri/doxygen. 

 8



Proc. 18th Conf. on Software Engineering Education and Training (CSEE&T), April 05, Ottawa 

[14] ArgoUML. http://argouml.tigris.org. 

[15] JDepend. www.clarkware.com/software/JDepend.html 

 9

http://www.clarkware.com/software/JDepend.html

	Teaching an Advanced Design, Team-oriented �Software Project
	Stan Jarzabek and Pin-Kwang Eng
	Department of Computer Science, School of Computing�National
	{stan,engpk}@comp.nus.edu.sg
	Abstract
	Students learn about design principles and “best practices” 
	1. Introduction
	The need for teaching project-oriented courses in engineerin
	Project courses emphasize team work, systematic development 
	Unstable requirements and software design are not only the t
	Students learn about design principles and “best practices” 
	The paper is organized as follows: In the next two sections,
	2. Background
	At the National University of Singapore (NUS), we experiment
	Industrial attachments offer an invaluable experience, but n
	With the above experiences, we took a fresh look on what kin
	3. An overview of CS3215
	The project is delivered in five phases, comprising requirem
	The project course starts with 10 lectures during which a ch
	Students spend two weeks on problem analysis and two weeks o
	Students develop the project in iterations. The iterative de
	Program reliability is emphasized throughout the project. Hi
	We give students a Project Handbook that includes problem  d
	We developed a Project Infrastructure for efficient delivery
	4. A tool environment
	One of the key components of our Project Infrastructure is a
	4.1. Introducing the tools to our students
	We wrote short tutorials to help students install and use th
	We also introduced compulsory training lab sessions, conduct
	4.2. Recommended tools for the project course
	Students use four categories of tools for the project, namel
	Testing tools. Reliability is one of the key qualities we lo
	Source code control systems. Students use the Concurrent Ver
	Build tools. Build tools are used to automate the build [2],
	Other tools. For documentation, students use Javadoc and Dox
	Before we end this section, we would like to comment on plag
	5. Evaluation of students’ projects
	Students’ projects are evaluated based on the scope of the p
	At the end of the project course, each team is given one hou
	To facilitate the final system testing, we developed a tool 
	6. Project course statistics
	We present some statistics to give a reader a better idea of
	6.1. Errors in implementation
	Figure 1 and Figure 2 illustrate the distribution of errors 
	From the figures, we can see that in general, most teams man
	Figure 1. Distribution of errors �(Java programs)
	Figure 2. Distribution of errors�(C++ programs)
	6.2. Program size
	Figure 3 and Figure 4 illustrate the distribution of program
	Figure 3. Program size �(Java programs)
	Figure 4. Program size �(C++ programs)
	Sometimes, by inspecting program metrics, we could spot case
	7. Results so far
	We have been offering the CS3215 project course in both term
	Improving communication skills is the major concern and the 
	The Project Infrastructure plays a critical role in achievin
	In summary, we found our approach to teaching a project cour
	8. Conclusion
	If the main role of universities is to teach fundamental con
	Unstable requirements and software design are not only the t
	9. Acknowledgments
	Many concepts for our project course emerged from research c
	References
	AgileAlliance http://www.agilealliance.org/home
	Armarego, J. Advanced Software Design: a Case Study in Probl
	Jacobson, I., Booch, G. and Rumbaugh, J. The Unified Softwar
	Jarzabek, S. (editor), “Teaching Software Project Courses” (
	Kamiya, T., Kusumoto, S., and Inoue, K. “CCFinder: A multi-l
	Robillard, P. “Teaching Software Engineering through a Proje
	Panel Discussion “Learning Objectives for Engineering Educat
	Apache Ant. http://ant.apache.org
	CppUnit. http://sourceforge.net/projects/cppunit.
	Concurrent Version System. http://www.cvshome.org.
	JUnit. http://www.junit.org.
	GNU make. http://www.gnu.org/software/make.
	Doxygen. http://www.stack.nl/~dimitri/doxygen.
	ArgoUML. http://argouml.tigris.org.
	JDepend. www.clarkware.com/software/JDepend.html

