
1

CS3215: Software Engineering ProjectCS3215: Software Engineering Project

CS3215, LN set #5: SE Principles

1. Abstraction and Information Hidingg

2. Separation of Concerns (SoC)

3. Modularity, Decomposition

4. Generality

5. Design for Change

CS3215 Set #5 SE Principles
1

g g

6. Rigor and Formality

Is software complex?

Software may be as complex as these:Software may be as complex as these:

Large software systems are among most complex systems

CS3215 Set #5 SE Principles
2

built by humans

Do we have right methods and tools to develop
and maintain software systems?

2

People can do amazing thingsPeople can do amazing things

 they are large and complex structures

12th century

2000 BC

10th - 15th century

20th century

CS3215 Set #5 SE Principles
3

y g p
 they were built without modern technologies!
 it took huge effort and cost to build them

– took some 27 years to build each pyramid
– thousands people died building them

We can build large, complex We can build large, complex
software systems, too!software systems, too!

1. Most businesses today depend on complex software
systemssystems

2. IBM OS (1960’s), huge, complex

3. Military software is huge, complex, must be reliable

4. WINDOWS (close to 100 million LOC)

It takes enormous effort and entails much risk

CS3215 Set #5 SE Principles
4

to develop large, complex software

How can we develop software faster,
at lower cost?

3

Software engineering challengesSoftware engineering challenges
despite new technologies and many successes there are problems:

 Software projects are often unpredictable
– many projects run out of schedule and budget,

– 25% of large projects are never completed

 Maintenance cost up to 80% of computing cost

 Reuse has not become a standard practice

CS3215 Set #5 SE Principles
5

 Low level of automation

 Outsourcing

SE principlesSE principles
1. Abstraction and Information Hiding

2. Separation of Concerns (SoC)

3. Modularity, Decomposition

4. Generality

5. Design for Change

6. Rigor and Formality

CS3215 Set #5 SE Principles
6

SE principles help us manage complexity

1. of a software system (product)

2. of the development process

4

What it takes to understand code?What it takes to understand code?

100,000 lines of Java code
in many directories and files

 what does this code do?

 how is code designed?
– what are roles of various files? what are they for?

which files form logical groups?

CS3215 Set #5 SE Principles
7

– which files form logical groups?

– how are files related to each other?

 what is this class for? where is it used?

 what is this variable for? where is it used?

Suppose I tell you what this code doesSuppose I tell you what this code does

 This code implements a Facility Reservation
Systems (FRS) FRS code

 FRS allows us to:
– reserve facilities such as rooms, equipment, …

– manage reservations: create, change, cancel, confirm

– manage FRS users

– define user rights

CS3215 Set #5 SE Principles
8

Which principle is in play here?

5

11stst principle: Abstractionprinciple: Abstraction
Abstraction: distill and describe essential

properties, while ignoring (hiding) some details
I i d il l f I ill d b i h h i l– I ignore details only for now, I will need bring them to the picture later

FRS code

CS3215 Set #5 SE Principles
9

 Still, there is huge gap between the left and the right!

How can I fill this gap? More abstractions?

FRS requirements

Models! Models!
 We have UML – Unified Modeling Language

 Models are pictures and “one picture is worth Models are pictures and one picture is worth

thousands words”

 Understand software through pictures!

 Models allow us to look at software from many

angles structure behavior

CS3215 Set #5 SE Principles
10

angles – structure, behavior, …

 Each model reveals some focused, abstract system

view

6

Use Case diagramUse Case diagram
1 . Re s e rva tion M a na ge m e nt

1 .1 Ma ke a

R e s e rva tio n
1 .2 Mo d ify a

R e s e rva tio n

2 . Fa c ility M a na ge m e nt

2 .1 Ad d a

Fa c il i ty
2 .2 D e le te a

Fa c il i ty

1 .3 D e le te a

R e s e rva tio n

1 .4 S e a rch a

R e s e rva tio n

1 .5 L is t

R e s e rva tio n s

2 .3 Mo d ify a

Fa c il i ty
2 .4 S e a rch a

Fa c il i ty

2 .5 L is t

Fa c il i ty

Start Make

Res ervation

Select

Facility

Enter

Res ervation
Period

[valid period]

[invalid period]

CS3215 Set #5 SE Principles
11

Check for

res ervation
conflict

res ervation

cancelled

[valid period]

[conflict]

confirm
res ervation

[no conflict]

Activity diagram: Activity diagram: Make ReservationMake Reservation

Start Make

Res ervation

Select

Facility

Enter

Res ervation

[invalid period]

Period

Check for

res ervation
conflict

[valid period]

CS3215 Set #5 SE Principles
12

res ervation
cancelled

[conflict]

confirm
res ervation

[no conflict]

7

Conceptual Class diagramConceptual Class diagram

User

Facility blockRes

singleRes

manages

CS3215 Set #5 SE Principles
13

Reservation

State Transition diagramState Transition diagram

Reservation
DeletedReservation ReservationReservation Confirmation

Reservation
Deleted

Deleted

Reservation
Deleted

CDT=RSDT

Idle DeletedPending
Confirmation

CS3215 Set #5 SE Principles
14

CDT=REDTReservation
Active

Reservation
Completed

8

Abstractions helpAbstractions help
FRS code

Models

 The gap between the left and the right is still wide!

FRS requirements

Documentation

CS3215 Set #5 SE Principles
15

What else can we do to fill the gap and

to further conquer complexity?

When we develop software, we are When we develop software, we are
concerned with so many things:concerned with so many things:

 FRS function (What?) and its design (How?)

FRS ser interface b siness logic database FRS user interface, business logic, database

 Quality attributes:

– Usability: Is FRS easy to use?

– Performance: is FRS response quick enough?

R li bili ’ i f il h I d i ?

CS3215 Set #5 SE Principles
16

– Reliability: won’t it fail when I need it most?

 Maintainability: Is FRS easy to change?

 Reusability: Can I reuse FRS components?

9

Can I deal with each concern Can I deal with each concern
separately from others?separately from others?

 Separation of Concerns is a common sense
approach to manage complexityapproach to manage complexity

Functional requirements
Quality attributes
performance, reliability

User interface

Bizz Logic Essentials

CS3215 Set #5 SE Principles
17

Maintainability

Database
Details

Reusability

FRS

22ndnd principle: principle:
Separation of Concerns (SoC)Separation of Concerns (SoC)

The power of SoC:

 Understand one concern separately from other concerns

 Work on concerns separately

– Important in team projects

Some concerns are easier to separate than others:

 Most often I can separate user interface from business logic

CS3215 Set #5 SE Principles
18

 Most often I can separate user interface from business logic

But

 It is difficult to separate performance concern from other aspects
of a software system (i.e., other concerns)

10

Abstraction and SoCAbstraction and SoC

Abstraction

 The gap between the left and the right is still wide!

FRS requirements

FRS code

Separation of Concerns

CS3215 Set #5 SE Principles
19

What else can we do to fill the gap and

to conquer complexity?

Calculation exampleCalculation example
 What is 2556 * 1551 = ?

 Decomposition: solve a complex problem in steps:

2556
12780

2556
12780

3964356

What principle is at work here?

CS3215 Set #5 SE Principles
20

 Decomposition: solve a complex problem in steps:

– decompose it into parts, understand and solve each part

 “Divide and Conquer” tactic – who used it first?

11

33rdrd principle: Modularity, Decompositionprinciple: Modularity, Decomposition
 We decompose along two dimensions:

– Product: decompose system into parts

Time: Decompose process into steps– Time: Decompose process into steps

 Each dimension has its own complexities, so we deal
with them separately (which principle?)

Models

FRS Components

Reservation
Management

Facility
Management

User
Management

Conflict Statistical

CS3215 Set #5 SE Principles
21

FRS requirements

FRS code
Micro-structure

Database
Connection

Resolution Reporting

... ...

...

FRS modular architecture
Macro-structure

FRS modular architectureFRS modular architecture

CS3215 Set #5 SE Principles
22

boxes are units of decomposition: Modules (or Components)

12

How architecture helps?How architecture helps?

Models

FRS Components

Reservation
Management

Facility
Management

User
Management

 Understand code at the higher abstraction level
– architecture shows logical groupings of modules that play different

FRS code

Models

Database
Connection

Conflict
Resolution

Statistical
Reporting

... ...

...

CS3215 Set #5 SE Principles
23

g g p g p y
roles

 Explain how FRS requirements have been implemented

 Evaluate and justify design decisions

Typical levels of decompositionTypical levels of decomposition
Decomposition of a system into subsystems:

subsys 2subsys 1

subsys 4subsys 3

yy

Decomposition of a subsystem into a layered hierarchy of modules:

layer 0Mod 1

CS3215 Set #5 SE Principles
24

layer 2

layer 1

layer 0

Mod 6Mod 4 Mod 5

Mo d 3Mod 2

13

How to decompose?How to decompose?
 It is a key to the success

– Most experienced developers in a company do that

1. Make modules highly cohesive
– Focused on a group of highly related tasks

– An easy test: describe the modules role and function

2. Minimize couplings among modules

CS3215 Set #5 SE Principles
25

– Any interactions or dependencies

3. Organize modules into layers
– Strive for simple interactions among layers

Coupling and CohesionCoupling and Cohesion
 We want this:

 But not that:

high cohesion and
low coupling

Why?

CS3215 Set #5 SE Principles
26

low cohesion and
high coupling

14

High cohesion and low couplingHigh cohesion and low coupling
 High cohesion and low coupling is a good design -

why?
– we can treat modules as black boxes, independently of

h theach other

 But why is it good to have black-box modules?
– We can work on modules independently
– We can change one module with minimum impact on

other modules (ripple effects of changes)

 The above are good enough reasons to strive for

CS3215 Set #5 SE Principles
27

 The above are good enough reasons to strive for
high cohesion and low coupling modules

Can we achieve total module independence?
Zero module coupling?

Module interfaces Module interfaces -- APIsAPIs
API

Module

Public: interface

Hidd P i t

 We want to let others use our module without knowing all
the module details - how?

 We want to change a module without affecting other

Module Hidden, Private:
implementation

CS3215 Set #5 SE Principles
28

modules – how?

 API: a description of what you can do with a module

Abstraction and information hiding

15

Principles so farPrinciples so far

Abstraction

 The gap between the left and the right become narrower!

FRS requirements

FRS code

Separation of Concerns

Modularity

CS3215 Set #5 SE Principles
29

What else can we do to fill the gap?

To conquer complexity?

44thth principle: Generalityprinciple: Generality
 Why to solve just one problem if I can solve many

similar problems with one program?
Examples: Examples:
– Generic <T> Stack

 Type parameter T: IntStack, ShortStack, CharStack

– GUI for user interface generation
– Compiler-compiler:

 A single system that generates compliers for many programming
languages

CS3215 Set #5 SE Principles
30

languages
 A general solution to building compilers

 Possible trade-ff: efficiency
– Specialized solution is often more efficient than general one

16

55thth principle: Design for Changeprinciple: Design for Change
Why is it a principle?
 Change is inevitable, we better plan for it

 Iterative software development won’t work if
software is hard to change
– Agile methods, daily/weekly builds

 FRS evolution: multiple versions released to
customers

CS3215 Set #5 SE Principles
31

66thth principle: Rigor & Formalityprinciple: Rigor & Formality
 We all love free, happy creativity!

– so why spoil the fun of programming with rigor?

A. You experiment with a new idea, sketch initial
design, try a new tool – do you need rigor?

B. You already reviewed and accepted design
decisions and now document it - do you need rigor?

H b t i it lf?

No

Yes

CS3215 Set #5 SE Principles
32

How about programming itself?

3. Program code is a 100% formal object

 Still, at times formality can help!

17

Comments on being formalComments on being formal
 Elements of formal notations can help with APIs.

however:
i i i i i i d i i– Give priority to intuitive descriptions

– Use formal notations to make your description precise

– Embed formal descriptions in intuitive, informal
descriptions that are easy to understand

 Always need choose the right technique for the
task in hand

CS3215 Set #5 SE Principles
33

task in hand
– The right formal notation for the purpose

– The right model for the purpose

– The right abstraction for the purpose

That’s all about principlesThat’s all about principles

Hope you will find some of this useful in your projects!

CS3215 Set #5 SE Principles
34

--- The End ---

