CS3215: Software Engineering Project

LN set #6: Software methods

1. Flexible design: table-driven approach
2. Evaluating and documenting design decisions
3. Use of UML diagrams

4. Testing

S3215 Set #6 Methods

Flexible design with
table-driven technique

24/2/2011

Query validation — table-driven solution

What does it take to validate a query?
assign a; while w; variable v;

* are design entities assign, while and variable defined in the
program design model?

 are arguments to Parent, assign correct?
« does variable have an attribute varName?

Example: what’s wrong with this query?

procedure p, q; assign a; cluster c;

Select p such that Calls(p,q) and Modifies (p, a) and Calls(p)
and ReferesTo (p, “x””) unlike Modifies()

CS3215 Set #6 Methods

Query validation

A simple-minded solution:
switch (relationship) {

case Calls: expect two arguments; each argument
should be either procedure synonym or *_’

case Next: expect two arguments; each argument
should be either statement number or synonym of
statement, assign, if, while or *_’

etc.

¥

CS3215 Set #6 Methods

24/2/2011

Program model definition tables

program

procedure

stmiLst

stmt

assign

o o |~ W [N (-

etc.

Table 1. Entity table - EntTable

Relationship # arguments type ofarg 1 type ofarg 2 type ofarg 3
Calls 2 procedure procedure nil
Calls* 2 procedure procedure nil
Modifies 2 procedure variable nil
2 stmt, assign, call, while, | variable nil
if, stmtLst
etc.

Table 2. Relationship table - Rel Table

CS3215 Set #6 Methods

Table-driven query validation

for each R in a query {

rel = getRelTabIndex (R)
if (#args = RelTab [rel, 2]) Error()

if (argl ¢RelTab [rel, 3] then Error()
if (arg2 ¢RelTab [rel, 4] then Error()

.}

R is a relationship referenced in a query,

* #args is the number of arguments of R as it appears in the

query,

 arglis the first argument of R, etc.

 Validation code checks if the actual references in a query
agree with their respective definitions in the tables.

CS3215 Set #6 Methods

24/2/2011

Table-driven technigue: summary

» Analyze a design problem and try to capture (some
part of) problem description in declarative, non-
procedural form (this is “data”)

— Program model definitions for query validation problem

» Work out a design solution as generic, table-driven
algorithm

Generic query validation

B

N
&

Table 1. Entity table - EntTable
Relationship arguments type ofarg type ofarg 2 ofarg3
Calls rocedure procedure n
Calls™ rocedure procedure n
Modifies rocedure varizble n
n

it assign, call, while, | variable

El
¥

E|

Table 2. Relationship table - Rel Table

CS3215 Set #6 Methods 7

Which qualities of SPA the table-driven
technique helps us address?

Ease of . o
Reusability Reliability

SPA qualities

[Table-driven technique]

Me_mo_ry Performance
utilization

CS3215 Set #6 Methods

24/2/2011

Evaluating design decisions

There are many ways to design SPA

— how do we make right design decisions?

Architectural design decisions

* High level decomposition of SPA into functional
components
— Evaluation: high cohesion, low coupling

e« Abstract PKB API

— The choice of API operations for design abstractions
. Completeness: Do I have all API operations that are needed?

Convenience: are they convenient to use?

— Documentation of PKB API

10
CS3215 Set #6 Methods

24/2/2011

Detailed design decisions

« Selection of data structures for
— Design abstractions in PKB
— Queries
 Design of algorithms
— Computing Next*, Affects, Affects*
— Query evaluation
 Supporting techniques
— Mappings between AST and source program
— Table-driven design
— Many others

CS3215 Set #6 Methods

11

Modifies (stmt, variable)

 Factors and design goals to consider:
— Memory utilization
— Performance of API operations
— Simplicity of implementation
« Alternative design solutions:
— Linked list
— Byte array
— Bit vector (various containers in STL)
 Evaluation:
— Explain how design solutions affect design goals
— Justify your choice of design solution

CS3215 Set #6 Methods

12

24/2/2011

Inter-dependent design decisions

SPA qualities

has impact on

13
CS3215 Set #6 Methods

Documenting design decisions

 Depict inter-dependencies among design decisions

» For each design problem:
— State design goals that matter
— Consider alternative design solutions
— Evaluate design solutions in view of design goals
— Justify your choice of design solution
— Document the above process
» Use Big O notation to describe complexity of
algorithms
— Next*, Affects, Affects*, query evaluation

CS3215 Set #6 Methods

14

24/2/2011

Use of UML diagrams

Class diagrams and sequence diagrams

— Check examples in Handbook

Use activity diagrams to describe complex algorithms

Always be clear about the purpose of a diagram, how
you are going to use it

Let it be one purpose per diagram (cohesion!)

— Common error: using class diagram to describe both
system structure and dynamic behavior

Check modeling guidelines, Handbook Section 10.3

CS3215 Set #6 Methods 1
A sketch of the SPA architecture

SPA consists of four subsystems: program entry %
* SPA front-end user interface
: query processing p auery el viewing | BECE,
e user interface query result

formattedz

/

query result

T ofecir query inPQL
front-end | design extractor %

query result
‘ N raw format

query ——query tree query
/ evaluator pre-processor

design abstractions

AST AST design abstractions

~—_ »

tables describing program design
model of SIMPLE:
design entities, attributes,
relationships

Program
Knowledge Base

CS3215 Set #6 Methods 16

24/2/2011

Showing detailed interactions

spA] KB Query g
Front-End Processor

Programmer SpA LI

SPA Controller 1 '

H»entersource i
run SPA——m! . ;
——bulldPKE create design abstr—m

[

|- - -1

4—fetch data—

! ! raluate query
; I | N | SCRESCEREE M

F3

query result

- display query result—

17
CS3215 Set #6 Methods

SPA front-end

! Frant-End Controller

|:I»enter source K
SPA—»
run ——parse source

R O i
Programmer SPALI - Extractor

create AST—ml | !
" exfract remaining design ébstrgb

—fetch AST info

——create des abstr

CS3215 Set #6 Methods

24/2/2011

Query processing

F.mg,am or @ Q Query =] Query Tree) Query =] PKB Query Resulta]
re-proccessor| Evaluator rojector
SPAU' PQL Controlle T
process cluel"f : : :
parse query-
—
validate query
|
: [[---mmmm -
i & EECELEEEETETE TS query results ------p-------oeono
I rarmatqiler\o’resw -
: L EECEEELETEEPEPPEPETETETEET formatted query results - - -- - - ---o-ememeoioimnannn
| - display query It Ll
-
1y

CS3215 Set #6 Methods

When sequence diagrams are useful

* Modeling SPA design:
— Understanding how SPA works
— Understanding responsibilities of components
— Understanding chains of interactions among
components

d PI’OjeCt management
— Plan development task
— Mark the progress of a project

 Testing

20
CS3215 Set #6 Methods

24/2/2011

10

Testing

Testing
» To ensure that software meets requirements
 To find and eliminate software errors
Testing may take 40% of development time!
Have | done enough testing?
“Testing can only show the presence of errors”

testing is never complete and no amount of testing

can prove program correctness

22
CS3215 Set #6 Methods

24/2/2011

11

Testing lifecycle

1. Test planning, testing strategy
2. Test case design
3. Execution of test cases and evaluation of test results

program
requirements 2
N .
design _ test case ,. library of
spec's “ design test cases

test case expected
results v

\ ’ y statistics
run

test case

code

test results, | evaluate

p| test results €rror™ debug

» 23
CS3215 Set #6 Methods

Documenting test cases

The purpose of a test case and description

Required inputs to a program

Expected results produced by a program

Any other requirements for running a test case

24
CS3215 Set #6 Methods

24/2/2011

12

Black-box and white box testing

» Black box testing:
Testing based on specifications, without looking into code
— Does a program meet requirements?
— Are all the required functions provided and fully
operational according to specs?

» White box testing:
Testing the way code is implemented
— Have all program modules been called?
— Have all statements been executed?
— Have all braches and control paths been covered?

25
CS3215 Set #6 Methods

Testing strategy

* What and when | should test?
— When to test parts of a program?
— When to test the entire program?
» Testing from inside out:
— Individual modules - unit testing
— Some modules together -integration testing
— The whole system — validation/system testing

module ,_/ unit

mi testing -~ ~ completesystem validation/system
integration \ - - — ——m testing
testing
tested >
module unit module
m2 testing

validated system

26
CS3215 Set #6 Methods

24/2/2011

13

Unit testing (cppUnit)
Units are functions and class methods
White-box tests, written by developer
— Before, during or just after writing code
— Is program logic correct in respect to specs?
Force program to execute:
— each statement
— each branch (edge in CFG)
— important control flow paths (CFG)
— do loops terminate properly?
Test legal and illegal inputs (exceptions)

27
CS3215 Set #6 Methods

Test coverage
ONNO

1 3

/

5)

 One test case can cover all statements: 1, 2, 3, 4,5
» Two test cases cover all branches: 1,2,3,4,5 1,3,5
 Four test cases cover all control paths:

1,2,3,4,5

1 31
H 21
3

[S S
B~ W o1

)
1’5

CS3215 Set #6 Methods

24/2/2011

14

Test coverage

» We cannot cover all the paths during testing:

No. of iterations | No. of control paths
0 2

1 4

2 8

10 2048

N 2*%*%(N+1)

» Try to identify and cover “essential”” paths

CS3215 Set #6 Methods

29

Covering independent paths

 Start with a test case for typical execution path

» Add test cases as long as they traverse at least one node or
edge not traversed before

()]
@
®3
©

(®)

© i=i

U]

CS3215 Set #6 Methods

30

24/2/2011

15

Sample test cases

Test case 1, purpose: skip the loop

inputs: i >=100; any value fory

expected results:a=1; b=1
Path covered: 1, 2,7
Test case 2, purpose: execute loop withy <0

inputs: 1<100;y<0

expected results: (a=2ora=3)and (b=2orb =3)
Path covered: 1, 2,3,4,6,2, ..., 7
Test case 3, purpose: execute loop withy >=0

inputs: 1 <100;y>=0

expected results: (a=2ora=3)and (b=2orb =3)
Path covered: 1, 2, 3,5,6, 2, ..., 7

CS3215 Set #6 Methods

31

Unit testing, cont.

» When to (re-)run unit tests?
— As soon as you can compile code of a unit
— After changes done to a unit

» What if changes of unit A may affect other
units B, C, ... ?

— Have test cases whose execution invokes A, B, C

» Defensive programming helps in testing

CS3215 Set #6 Methods

24/2/2011

16

* Modules A and B were implemented separately

Integration testing

— Will A and B work together ok?

CS3215 Set #6 Methods

Caller
A B
Parser Design Query Affects
L_Extractor Evaluator /
/ CFG Which vars are modified
in CEG node?
AST Modifies

Modifies

33

Programmer

SPALI
H Front-End Controller

Parser3] PKB Design 3]
Extractor

H»emersuun:e v
fun P4 ’ ——parse source
T create AST—w

" exiract remaining design abstr——
——fetch AST info

Planning integration testing

» Have I tested all important module interactions?

-

d
L]

——create des abstr

La

» Use sequence diagrams to plan integration tests
— Refine sequence diagrams given in the Handbook

CS3215 Set #6 Methods

24/2/2011

17

Running test cases

» We must have a program that compiles

inputs “expected
A results a.

testing real .
programm i evaluation
results test

resultsa

CS3215 Set #6 Methods

Testing incomplete program

 To test, we must compile and run a program

Caller

incomplete
program

N

A B

e If A and B are not available, write test stubs to

simulate the behavior of A and B
 If Caller is not available, write test driver

CS3215 Set #6 Methods

36

24/2/2011

18

24/2/2011

Validation/system testing

Testing a complete system

In SPA, different types of queries form system
tests

— Inputs: source in SIMPLE, query

— Qutput: query results

Auto-Tester automates system testing

— Design tests once - execute many times

— Quick validation after changes

Accumulate test cases and execute them often
throughout a project

--- The End --- 37

CS3215 Set #6 Methods

19

