
24/2/2011

1

CS3215: Software Engineering Project

LN set #6: Software methods

1. Flexible design: table-driven approach

2. Evaluating and documenting design decisions

3. Use of UML diagramsg

4. Testing

CS3215 Set #6 Methods
1

Flexible design with
table-driven technique

24/2/2011

2

Query validation – table-driven solution
What does it take to validate a query?
assign a; while w; variable v;
Select a such that Parent* (w, a) pattern a (v,) with v.varName=“x”(,) p (, _)

• are design entities assign, while and variable defined in the
program design model?

• are arguments to Parent, assign correct?
• does variable have an attribute varName?

Example: what’s wrong with this query?

CS3215 Set #6 Methods
3

procedure p, q; assign a; cluster c;

Select p such that Calls(p,q) and Modifies (p, a) and Calls(p)

and ReferesTo (p, “x”) unlike Modifies()

Query validation
A simple-minded solution:

switch (relationship) {

case Calls: expect two arguments; each argument

should be either procedure synonym or ‘_’

case Next: expect two arguments; each argument

should be either statement number or synonym of

CS3215 Set #6 Methods
4

statement, assign, if, while or ‘_’

etc.

}

24/2/2011

3

Program model definition tables

1 program

2 procedure

3 stmtLst3 stmtLst

4 stmt

5 assign

6 etc.

 Table 1. Entity table - EntTable

Relationship # arguments type of arg 1 type of arg 2 type of arg 3
Calls 2 procedure procedure nil
Calls* 2 procedure procedure nil
M difi 2 d i bl il

CS3215 Set #6 Methods
5

Modifies 2 procedure variable nil
 2 stmt, assign, call, while,

if, stmtLst
variable nil

etc.

Table 2. Relationship table - RelTable

Table-driven query validation
for each R in a query {

rel = getRelTabIndex (R)

if (#  R lT b [l 2]) E ()if (#args  RelTab [rel, 2]) Error()

if (arg1 RelTab [rel, 3] then Error()

if (arg2 RelTab [rel, 4] then Error()

… }

• R is a relationship referenced in a query,

• #args is the number of arguments of R as it appears in the

CS3215 Set #6 Methods
6

#args is the number of arguments of R as it appears in the
query,

• arg1 is the first argument of R, etc.

• Validation code checks if the actual references in a query
agree with their respective definitions in the tables.

24/2/2011

4

Table-driven technique: summary
• Analyze a design problem and try to capture (some

part of) problem description in declarative, non-
d l f (thi i “d t ”)procedural form (this is “data”)

– Program model definitions for query validation problem

• Work out a design solution as generic, table-driven
algorithm

1 program

2 procedure

3 stmtLst

CS3215 Set #6 Methods 7

4 stmt

5 assign

6 etc.

 Table 1. Entity table - EntTable

Relationship # arguments type of arg 1 type of arg 2 type of arg 3
Calls 2 procedure procedure nil
Calls* 2 procedure procedure nil
Modifies 2 procedure variable nil
 2 stmt, assign, call, while,

if, stmtLst
variable nil

etc.

Table 2. Relationship table - RelTable

Generic query validation

Which qualities of SPA the table-driven
technique helps us address?

SPA qualities

Memory
utilization

Performance

Scalability

Ease of
changing

Reusability

Flexibility

Reliability

Simplicity

CS3215 Set #6 Methods
8

Table-driven technique

24/2/2011

5

E l ti d i d i iEvaluating design decisions

There are many ways to design SPA

– how do we make right design decisions?

Architectural design decisions
• High level decomposition of SPA into functional

components

– Evaluation: high cohesion, low coupling

• Abstract PKB API

– The choice of API operations for design abstractions

• Completeness: Do I have all API operations that are needed?p p

• Convenience: are they convenient to use?

– Documentation of PKB API

CS3215 Set #6 Methods
10

24/2/2011

6

Detailed design decisions
• Selection of data structures for

– Design abstractions in PKBg
– Queries

• Design of algorithms
– Computing Next*, Affects, Affects*
– Query evaluation

• Supporting techniques• Supporting techniques
– Mappings between AST and source program
– Table-driven design
– Many others

CS3215 Set #6 Methods
11

Modifies (stmt, variable)
• Factors and design goals to consider:

– Memory utilization
P f f API ti– Performance of API operations

– Simplicity of implementation

• Alternative design solutions:
– Linked list
– Byte array

Bit vector (various containers in STL)– Bit vector (various containers in STL)

• Evaluation:
– Explain how design solutions affect design goals
– Justify your choice of design solution

CS3215 Set #6 Methods
12

24/2/2011

7

Inter-dependent design decisions

SPA qualities

Affects

Affects*

Traversal of CFG *

AST Query evaluation

Basic Query
Evaluation

Optimization
Strategy

CS3215 Set #6 Methods
13

Modifies Traversal of CFG Cache

CFG

has impact on

Documenting design decisions
• Depict inter-dependencies among design decisions

• For each design problem:g p
– State design goals that matter

– Consider alternative design solutions

– Evaluate design solutions in view of design goals

– Justify your choice of design solution

– Document the above processDocument the above process

• Use Big O notation to describe complexity of
algorithms
– Next*, Affects, Affects*, query evaluation

CS3215 Set #6 Methods 14

24/2/2011

8

Use of UML diagrams
• Class diagrams and sequence diagrams

– Check examples in Handbookp

• Use activity diagrams to describe complex algorithms

• Always be clear about the purpose of a diagram, how
you are going to use it

• Let it be one purpose per diagram (cohesion!)

– Common error: using class diagram to describe both
system structure and dynamic behavior

• Check modeling guidelines, Handbook Section 10.3

CS3215 Set #6 Methods
15

A sketch of the SPA architecture
SPA consists of four subsystems:
• SPA front-end
• query processing query result viewing

user interface

program entry
user interface

query entry
user interface

• PKB
• user interface

user interface

query result
projector

query result
formattedz

query result
raw format

design extractor parser

query in PQL
SPA
front-end

tables describing program design
model of SIMPLE:

design entities, attributes,
relationships

query
pre-processor

query
evaluator

Program
Knowledge Base

PKB

query tree

design abstractions

design abstractions
AST AST

CS3215 Set #6 Methods 16

24/2/2011

9

Showing detailed interactions

CS3215 Set #6 Methods
17

SPA front-end

CS3215 Set #6 Methods
18

24/2/2011

10

Query processing

CS3215 Set #6 Methods
19

When sequence diagrams are useful

• Modeling SPA design:
Understanding ho SPA orks– Understanding how SPA works

– Understanding responsibilities of components

– Understanding chains of interactions among
components

• Project management
– Plan development task

– Mark the progress of a project

• Testing

CS3215 Set #6 Methods
20

24/2/2011

11

Testing

Testing
• To ensure that software meets requirements

T fi d d li i f• To find and eliminate software errors

Testing may take 40% of development time!

Have I done enough testing?

“Testing can only show the presence of errors”Testing can only show the presence of errors

testing is never complete and no amount of testing

can prove program correctness

CS3215 Set #6 Methods
22

24/2/2011

12

Testing lifecycle
1. Test planning, testing strategy

2. Test case design

3. Execution of test cases and evaluation of test results

2.

program
requirements

design
spec's

library of
test cases

test case
design

CS3215 Set #6 Methods
23

3.
test case

test results

expected
results

statistics

error

code

code

debug
evaluatetest case

run

test results

Documenting test cases

• The purpose of a test case and description

• Required inputs to a program

• Expected results produced by a program

• Any other requirements for running a test case

CS3215 Set #6 Methods
24

24/2/2011

13

Black-box and white box testing
• Black box testing:
Testing based on specifications, without looking into code

– Does a program meet requirements?

– Are all the required functions provided and fully
operational according to specs?

• White box testing:
Testing the way code is implemented g y p

– Have all program modules been called?

– Have all statements been executed?

– Have all braches and control paths been covered?

CS3215 Set #6 Methods
25

Testing strategy
• What and when I should test?

– When to test parts of a program?

Wh t t t th ti ?– When to test the entire program?

• Testing from inside out:
– Individual modules - unit testing

– Some modules together -integration testing

– The whole system – validation/system testing

module unit

CS3215 Set #6 Methods
26

module
m1

module
m2

tested
module

complete system

validated system

unit
testing

validation/system
testingintegration

testing

unit
testing

24/2/2011

14

Unit testing (cppUnit)
• Units are functions and class methods
• White-box tests, written by developer

– Before, during or just after writing code
– Is program logic correct in respect to specs?

• Force program to execute:
– each statement
– each branch (edge in CFG)each branch (edge in CFG)
– important control flow paths (CFG)
– do loops terminate properly?

• Test legal and illegal inputs (exceptions)

CS3215 Set #6 Methods
27

Test coverage
2 4

1

CFG

• One test case can cover all statements:

• Two test cases cover all branches:

• Four test cases cover all control paths:

531

1, 2, 3, 4, 5

1, 2, 3, 4, 5 1, 3, 5

CS3215 Set #6 Methods
28

1, 2, 3, 4, 5
1, 3, 5
1, 2, 3, 5
1, 3, 4, 5

24/2/2011

15

Test coverage

• We cannot cover all the paths during testing:

No. of iterations No. of control paths
0 2
1 4
2 8
....
10 2048

• Try to identify and cover “essential” paths

CS3215 Set #6 Methods
29

N 2**(N+1)

Covering independent paths

• Start with a test case for typical execution path

• Add test cases as long as they traverse at least one node or• Add test cases as long as they traverse at least one node or
edge not traversed before

(1) a = 1;
b = 1;

(2) while (i < 100) {
(3) c = i + 1;

z = a;
if (y < 0){

(4) a =2;
T

F 2

1

CS3215 Set #6 Methods
30

b = 2;
else {

(5) a = 3;
b = 3; }

(6) i = i + 1;
y = y + c; }

(7) z= a + b

T F

7

6

54

3

24/2/2011

16

Sample test cases
Test case 1, purpose: skip the loop

inputs: i >= 100; any value for y
expected results: a = 1; b = 1expected results: a = 1; b = 1

Path covered: 1, 2, 7
Test case 2, purpose: execute loop with y < 0

inputs: i < 100; y < 0
expected results: (a = 2 or a = 3) and (b = 2 or b = 3)

Path covered: 1, 2, 3, 4, 6, 2, ..., 7
l i hTest case 3, purpose: execute loop with y >= 0

inputs: i < 100; y >= 0
expected results: (a = 2 or a = 3) and (b = 2 or b = 3)

Path covered: 1, 2, 3, 5, 6, 2, ..., 7

CS3215 Set #6 Methods
31

Unit testing, cont.

• When to (re-)run unit tests?

– As soon as you can compile code of a unit

– After changes done to a unit

• What if changes of unit A may affect other
units B, C, … ?

– Have test cases whose execution invokes A, B, C

• Defensive programming helps in testing

CS3215 Set #6 Methods
32

24/2/2011

17

Integration testing

• Modules A and B were implemented separately
– Will A and B work together ok?

Caller

A B

CS3215 Set #6 Methods
33

AST

Parser

Modifies

Design
Extractor

Query
Evaluator

CFG
Which vars are modified

in CFG node?

Modifies

Affects

Planning integration testing

• Have I tested all important module interactions?

• Use sequence diagrams to plan integration tests
– Refine sequence diagrams given in the Handbook

CS3215 Set #6 Methods
34

24/2/2011

18

Running test cases

• We must have a program that compiles

inputs expected
results

CS3215 Set #6 Methods
35

program real
results test

results

evaluation
testing

Testing incomplete program
• To test, we must compile and run a program

incomplete
program

A B

Caller

• If A and B are not available, write test stubs to
simulate the behavior of A and B

• If Caller is not available, write test driver

CS3215 Set #6 Methods
36

24/2/2011

19

Validation/system testing
• Testing a complete system

• In SPA, different types of queries form system
t ttests
– Inputs: source in SIMPLE, query

– Output: query results

• Auto-Tester automates system testing
– Design tests once - execute many timesDesign tests once execute many times

– Quick validation after changes

• Accumulate test cases and execute them often
throughout a project

CS3215 Set #6 Methods
37--- The End ---

