
1

C++ briefingC++ briefing
CS3215

gg
Outline:

1. Introduction

CS3215 C++ briefing 1

2. C++ language features

3. C++ program organization

C++ versus JavaC++ versus Java

 Java is safer and simpler than C++

C i f f l h J C++ is faster, more powerful than Java:

– lack of run-time checks in C++

– direct use of pointers

– dynamically allocated memory managed by the
programmer (no garbage collection)

CS3215 C++ briefing 2

programmer (no garbage collection)

– bit operations

– static and dynamic binding (virtual functions)

2

Part 1:Part 1:Part 1:Part 1:

C++ language featuresC++ language features

CS3215 C++ briefing 3

C++ program elementsC++ program elements

 classes and class instances – objects
– data members

– member functions

– public/protected/private

 unattached functions
– int max (int i, int j) { …}

f i i (i i)

CS3215 C++ briefing 4

– function prototype: int max (int, int);

 global variables

 constants

3

Typical program modulesTypical program modules

 main module : contains function main ()
– unattached function main() is called first

 class module:
– class interfaces in .h files and class

implementations in .cpp files

 mixed module :
– contains declarations, included files and

CS3215 C++ briefing 5

,
collection of classes and/or unattached function
implementations related to a single task

– mixed modules in SPA : parser, query evaluator

C++ program filesC++ program files
 header files (stack.h) define module interfaces

– services provided by a module (push(), pop(),…)

 implementation files (stack.cpp)

– implementation of functions

 communication across files is established via

CS3215 C++ briefing 6

declarations placed in header files:

– in order to use stack (implemented in stack.cpp) in file f,

file f must #include file stack.h

4

Class IntStackClass IntStack

class IntStack {

bli

header file stack.h: implementation file stack.cpp:

#include “stack.h”public:

static const int s_MAX = 100;

IntStack ();

void push ();

int top ();

void pop ();

bool empty ();

IntStack::IntStack () {

code for IntStack here }

void IntStack::push () {

code for push () here }

etc. }

CS3215 C++ briefing 7

bool empty ();

bool full ();

private:

int elem [MAX];

int top; }

#include “stack.h” directive causes pre-
processor to include the contents of stack.h

PrePre--processingprocessing
Macros embedded in code:

#include “file-name”

// the contents of the file-name is included here

#include <iostream>, <cassert>, <string>, <list>

ANSI C headers: <assert.h>, <cstring>

#define MAX 100

// occurrences of MAX in program are replaced with 100

CS3215 C++ briefing 8

// occurrences of MAX in program are replaced with 100

program
with macros

pre-processing

program
without macros

compilation
linking

executable
code

5

Definition vs. declarationDefinition vs. declaration
 there can be ONLY ONE definition of a program

element in a given scope:
– int x = 5; extern int y = 5; const int z = 5; static int t = 10;int x 5; extern int y 5; const int z 5; static int t 10;
// compiler allocates memory for the above elements
– implementation of a member or unattached function

 declaration allows you to use the element without
knowing it’s definition:
– extern int x; // allows you to use x in a given program file

i t f (i t) // f ti t t

CS3215 C++ briefing 9

– int fun (int arg); // function prototype
– class A { } // class interface as in the header file
– forward declaration of a class

class A; //
A* pA; // you may now declare a pointer to A

Name scoping rulesName scoping rules

 block scope: { int x; }
you can use x within the block– you can use x within the block

 function and class scope

 program file scope

 external linkage: across files

CS3215 C++ briefing 10

int x;
int A::fA() { x = 1; }
int fun (int arg) { x = 2; }

extern int x;
x = 3;

file f.cpp file g.cpp

the same x

6

Name spacesName spaces
namespace scope_1

{ // any constructs here

int x; // this x is local to scope_1 }

namespace scope_2

{ int x; // this x is different from x in scope_1 }

references to x in different name spaces:

scope 1::x = 1;

CS3215 C++ briefing 11

scope_1::x 1;

scope_2::x = 2;

using namespace scope_1; // all the references to x
will refer to x in scope_1

Static membersStatic members

 defined for the whole class, not individual object

class TNode {class TNode {

public

static TNode * s_root_p;

static int fTNode (); }

TNode *p;

CS3215 C++ briefing 12

TNode p;

p = TNode:: s_root_p; // use static without object

TNode:: fTNode(); // call to static member function

7

ArraysArrays
 array is not a class

 definition of automatic array: int a [100];y [];
– a[0], a[1], …, a[99]

– a[100] – runtime error

 array definitions without specified limits
– limits are determined by a compiler

CS3215 C++ briefing 13

– char text [] = “text here”;

– int a [] = {1, 2, 3,}

– foo (int a[]);

PointersPointers
 pointer contains address of memory location

int *pi; // pointer to the integer

class A { };class A { … };

A *pA = new(); // pointer to object of class A

 using pointers:

int i = 2;

int *pi;

pi = &i; // assigns pi address of i to pi

2i

pi

3

CS3215 C++ briefing 14

p ; g p p

*pi = 3; // dereference operator *pi
// assigns 3 to location pointed to by pi, value of i now 3

pA -> fA() // invocation of A::fA()

(*pA).fA() // the same as above

p

8

Pointers, cont.Pointers, cont.
 pointers to pointers

int i = 2; 2i
int *pi;

int **ppi, ***pppi;

pi = &i:

ppi = π

pi

ppi

CS3215 C++ briefing 15

pppi = &ppi;

***pppi // the same as value of i

 universal pointer: void* p;

pppi

Constant pointersConstant pointers
int i = 7;

const int *p = &i; //can’t change value pointed to by pconst int p &i; //can t change value pointed to by p

*p = 8 // error

int * const q = &i; // can’t change q

q = p; // error

const int * const r = &i;

CS3215 C++ briefing 16

const int * const r = &i;

*r = 8 // error

r = p; // error

9

Arrays and pointersArrays and pointers
 array name is constant pointer whose value points to the first

array element

char t1 [10] t2 [10];
t1

char t1 [10], t2 [10];

char *pc1 = t1; //ok

t1 = t2; // error

pc1 = t1 + 5 // pc1 points to t1 [5]

*t1 = *(t1 + 5) // assigns value of t1[5] to t1[0]

h t t h if i d d t t f if it

0 2 3 4 51

pc1

pc1

CS3215 C++ briefing 17

 you have to watch if array index does not go out of range; if it
does – you will get a runtime error

char *cc = new char;

cc+1 // legal but points to nowhere – leads to a runtime error

Function argument passingFunction argument passing
 arguments passed by value:
void fun (int arg) { arg = 2; }

int j = 1; fun (j); // value of j is still 1

// values of j is assigned to location arg which is used

// in fun(), value of j is not changed by function call

 arguments passed by reference:
void fun (int &arg) { arg = 2; }

CS3215 C++ briefing 18

void fun (int &arg) { arg 2; }

int j = 1; fun (j); // value of j is 2

// references can be also used as aliases:

int &x = i; // x is an alias for i

10

Memory allocationMemory allocation
 automatic memory allocation on the stack

– when function is called, the runtime system allocates
memory for all the objects defined in that functionmemory for all the objects defined in that function

h k

fun ()
class A { }
void fun() {
A a, b;
int x [10];
… }
fun();

object a
object b

10 int for x

…

CS3215 C++ briefing 19

– when function execution is completed, the runtime
system automatically frees the memory

memory on the stack fun();

Automatic memory on the stackAutomatic memory on the stack

char *fun() {

char buf [100];char buf [100];

get (buf); // write values to ‘buf’

return buf; }

char *pc = fun();

CS3215 C++ briefing 20

//memory for ‘buf’ has been freed!

11

Free memory allocation on the heapFree memory allocation on the heap

 allocated with operator new () and freed
with delete ()

 values accessed via pointers

class A { .. }
void fun () {

A *pA = new A;

object of class A

CS3215 C++ briefing 21

// no automatic deleting of memory

delete pA; //frees memory
} free memory on the heap

Bitwise operationsBitwise operations

 how do you represent Modifies in SPA project?

– bit vector with n’th bit corresponding to n’th variablebit vector with n th bit corresponding to n th variable

– n’th bit 1 means that n’th variable is modified in a
given procedure

– n’th bit 0 means that n’th variable is NOT modified in a
given procedure

 compact and easy to manipulate representation

CS3215 C++ briefing 22

 compact and easy to manipulate representation

 revisit bitwise operations when you plan data
structures for Modifies and Uses relationships

12

Dynamic vs. static bindingDynamic vs. static binding
 overriding of member functions defined in the

parent class by those from derived classes

d i bi di f i t l b f ti d dynamic binding for virtual member functions and
static biding for non-virtual ones

class A {
public:
virtual f ();
g (); }B *pB = new B();

A *pA pB;

CS3215 C++ briefing 23

class B : public A {
public:
virtual f ();
g (); }

A *pA = pB;

pA -> f(); // dynamic: B::f() is called

pA -> g(); // static: A::g() is called

Part 2:Part 2:

C++ program organizationC++ program organization

CS3215 C++ briefing 24

13

Physical structure of C++ programsPhysical structure of C++ programs
 once you have:

– understood the problem (SPA)

– completed architecture design

– decided upon representation of SPA solution in C++

language

 you will have to organize C++ program into

CS3215 C++ briefing 25

modules implemented in many files

 physical organization of program modules into files

is a critical success factor in large-scale projects

Typical program modulesTypical program modules

 main module file: contains function main ()
– unattached function main() is called first

 class module files:
– class interfaces in .h files and class

implementations in .cpp files

 mixed module files:
– contains declarations, included files and

CS3215 C++ briefing 26

,
collection of classes and/or unattached function
implementations related to a single task

– mixed modules in SPA : parser, query evaluator

14

Typical program organizationTypical program organization

module interface module interface module interface

mod1.h mod2.h mod3.h

#include …

int main () { }

services required:

#include

definitions

services required:

module

services required:

module main.cpp

CS3215 C++ briefing 27

declarations

module
implementation

implementation implementation
a .cpp

mod1.cpp mod2.cpp mod3.cpp

#include “mixed.h”

#include <stack>

class A { … }

class B { … }

class C { … }

int fun (int arg);A.h
mixed.h

#include <iostream>

#include “A.h”

int global_count = 0;

int main () {

A a:

a.fPubA(); }

#include “A.h”

extern global_count;

int fun (int arg);

int A::fPubA () {

global_count++;

}

etc.

#include “A.h”

extern global_count;

// other #include and declarations

// implementation of class B methods:

int B::fPubB () {

A a; stack s;

global_count++; }

CS3215 C++ briefing 28

etc.
// implementation of class C methods:

int C::fPubB () {

A a;

fun (20); }

int fun (int arg) {

// implementation of function fun }

main.cpp A.cpp

mixed.cpp

15

About header filesAbout header files
 you can include many library classes/functions:

#include <iostream>, #include <string>, #include <cassert>

 use “include guards” to avoid multiple use include guards to avoid multiple
inclusions of the same header:
#ifndef HEAD_A
#define HEAD_A
#include A.h
/// possibly other included headers here

CS3215 C++ briefing 29

#endif //HEAD_A

 do not put definitions (only declarations) in
headers

Proper use of header filesProper use of header files
 chaotic design will result in many dependencies:

mod1.cpp: mod2 cpp: mod3.cpp:

 design program in layers to avoid circular
inclusions of headers:

pp
#include mod2.h
#include mod3.h

mod2.cpp:
#include mod1.h
#include mod3.h

pp
#include mod1.h
#include mod2.h

CS3215 C++ briefing 30

mod1.cpp:
mod2.cpp:
#include mod1.h

mod3.cpp:
#include mod2.h

16

Proper use of header files, cont.Proper use of header files, cont.

 too many header files complicate the program
– sometimes it is better to use forward declarations

th th h drather than headers:

extern int x;

int fun (int arg);

class A; // you may now declare a pointer to class A

pA* A;

CS3215 C++ briefing 31

p

 many .cpp files may include the same header
– design program to minimize the amount of re-

compilation required after modification of a header

How is executable code produced?How is executable code produced?

mod1.h mod4.hmod3.hmod2.h

main.cpp mod1.cpp mod2.cpp mod3.cpp mod4.cpp

pre-processing

compilation

mod1.o mod2.o mod3.o mod4.omain.o

source code
without macros

CS3215 C++ briefing 32

linking

loading
executable code a.out

17

Adopt naming standards, e.g.:Adopt naming standards, e.g.:

 file names: query_eval.h, query-eval.cpp
class name: Cfg, TNode, (or TreeNode)g, , ()
class TNode {
public:

static TNode *s_root_p;
//static data member with prefix s_; pointers with suffix _p

TNode *getParent ();

CS3215 C++ briefing 33

g ();
private:

int d_nodeCount; // prefix d_ for data members }
etc.

Documenting module interfacesDocumenting module interfaces
class TNode {

public:

// CONSTRUCTORS:

TNode ();TNode ();

// MODIFIERS (SETTERS):

void setParent (TNode *parent);

// ACEESSORS (GETTERS):

TNode *getParent (); }

 module query_evaluator.cpp does not need all the interface
operations of class TNode (or TNode)

CS3215 C++ briefing 34

p ()

– use comments to indicate which interface operations of
class TNode are used in query_evaluator.cpp

 use comments to explain interface operations

18

Exceptions and assertionsExceptions and assertions

 Use exceptions to handle abnormal program behavior
– to handle anticipated errorsto handle anticipated errors

 Assertions express your intention as to what a correct
program behavior should be:
– check if program behaves according to program

requirements

– serve as documentation, a bridge between code and
requirements

 Read Section 10.6 in Handbook: Error handling,
exceptions and assertions in C++

CS3215 C++ briefing 35

Advanced C++ featuresAdvanced C++ features

 pointers to functions (unattached and members)

 templates and related classes in STL templates and related classes in STL

 overloading of operations, etc.

--

 start by using basic language features, as described
in this briefing

CS3215 C++ briefing 36

 study and apply more advanced features only
when you need them

--- The End ---

