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2. C++ language features

3. C++ program organization

C++ versus JavaC++ versus Java

 Java is safer and simpler than C++

C i f f l h J C++ is faster, more powerful than Java: 

– lack of run-time checks in C++

– direct use of pointers 

– dynamically allocated memory managed by the 
programmer (no garbage collection)
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programmer (no garbage collection)

– bit operations

– static and dynamic binding (virtual functions)



2

Part 1:Part 1:Part 1:Part 1:

C++ language featuresC++ language features
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C++ program elementsC++ program elements

 classes and class instances – objects
– data members

– member functions

– public/protected/private

 unattached functions 
– int max (int i, int j) { …}

f i i (i i )
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– function prototype: int max (int, int);

 global variables

 constants
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Typical program modulesTypical program modules

 main module : contains function main ()
– unattached function main() is called first

 class module:
– class interfaces in .h files and class 

implementations in .cpp files

 mixed module :
– contains declarations, included files and 
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,
collection of classes and/or unattached function 
implementations related to a single task

– mixed modules in SPA : parser, query evaluator

C++ program filesC++ program files
 header files (stack.h) define module interfaces

– services provided by a module  (push(), pop(),… )

 implementation files (stack.cpp)

– implementation of functions

 communication across files is established via 
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declarations placed in header files:

– in order to use stack (implemented in stack.cpp) in file f, 

file f must #include file stack.h
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Class IntStackClass IntStack

class IntStack {

bli

header file stack.h: implementation file stack.cpp:

#include “stack.h”public:

static const int s_MAX = 100;

IntStack ();

void push ();

int top ();

void pop ();

bool empty ();

IntStack::IntStack () {

code for IntStack here }

void IntStack::push () {

code for push () here }

etc. }
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bool empty ();

bool full ();

private:

int elem [MAX];

int top; }

#include “stack.h” directive causes pre-
processor to include the contents of stack.h

PrePre--processingprocessing
Macros embedded in code:

#include “file-name”

// the contents of the file-name is included here

#include <iostream>, <cassert>, <string>, <list>

ANSI C headers: <assert.h>, <cstring>

#define MAX 100

// occurrences of MAX in program are replaced with 100
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// occurrences of MAX in program are replaced with 100

program
with macros

pre-processing

program
without macros

compilation
linking

executable
code
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Definition vs. declarationDefinition vs. declaration
 there can be ONLY ONE definition of a program 

element in a given scope:
– int x = 5; extern int y = 5; const int z = 5; static int t = 10;int x  5; extern int y  5; const int z  5; static int t  10;
// compiler allocates memory for the above elements
– implementation of a member or unattached function

 declaration allows you to use the element without 
knowing it’s definition:
– extern int x; // allows you to use x in a given program file

i t f (i t ) // f ti t t
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– int fun (int arg); // function prototype
– class A { } // class interface as in the header file
– forward declaration of a class

class A;  // 
A* pA; // you may now declare a pointer to A

Name scoping rulesName scoping rules

 block scope: { int x; }
you can use x within the block– you can use x within the block

 function and class scope

 program file scope

 external linkage: across files
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int x;
int A::fA() { x = 1; }
int fun (int arg) { x = 2; }

extern int x;
x = 3;

file f.cpp file g.cpp

the same x
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Name spacesName spaces
namespace scope_1

{ // any constructs here

int x; // this x is local to scope_1 }

namespace scope_2

{ int x; // this x is different from x in scope_1 }

references to x in different name spaces:

scope 1::x = 1;
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scope_1::x  1;

scope_2::x = 2;

using namespace scope_1; // all the references to x 
will refer to x in scope_1

Static membersStatic members

 defined for the whole class, not individual object

class TNode {class TNode {

public

static TNode * s_root_p; 

static int fTNode (); }

TNode *p;
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TNode p;

p = TNode:: s_root_p; // use static without object

TNode:: fTNode(); // call to static member function
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ArraysArrays
 array is not a class

 definition  of automatic array: int a [100];y [ ];
– a[0], a[1], …, a[99]

– a[100] – runtime error

 array definitions without specified limits
– limits are determined by a compiler
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– char text [] = “text here”;

– int a [] = {1, 2, 3,}

– foo (int a[]);

PointersPointers
 pointer contains address of memory location

int *pi; // pointer to the integer 

class A { };class A { … };

A *pA = new(); // pointer to object of class A

 using pointers: 

int i = 2;

int *pi;

pi = &i; // assigns pi address of i to pi

2i

pi

3
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p ; g p p

*pi = 3; // dereference operator *pi
// assigns 3 to location pointed to by pi, value of i now 3

pA -> fA() // invocation of A::fA()

(*pA).fA() // the same as above

p
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Pointers, cont.Pointers, cont.
 pointers to pointers

int i = 2; 2i
int *pi;

int **ppi, ***pppi;

pi = &i:

ppi = &pi; 

pi

ppi
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pppi = &ppi;

***pppi // the same as value of i

 universal pointer: void* p;

pppi

Constant pointersConstant pointers
int i = 7;

const int *p = &i; //can’t change value pointed to by pconst int p  &i; //can t change value pointed to by p

*p = 8 // error

int * const q = &i; // can’t change q

q = p; // error

const int * const r = &i;
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const int * const r = &i;

*r = 8 // error

r = p; // error
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Arrays and pointersArrays and pointers
 array name is constant pointer whose value points to the first 

array element

char t1 [10] t2 [10];
t1

char t1 [10], t2 [10];

char *pc1 = t1; //ok

t1 = t2; // error

pc1 = t1 + 5 // pc1 points to t1 [5]

*t1  = *(t1 + 5) // assigns value of t1[5] to t1[0]

h t t h if i d d t t f if it

0 2 3 4 51

pc1

pc1
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 you have to watch if array index does not go out of range; if it 
does – you will get a runtime error

char *cc = new char;

cc+1 // legal but points to nowhere – leads to a runtime error 

Function argument passingFunction argument passing
 arguments passed by value:
void fun (int arg) { arg = 2; }

int j = 1; fun (j); // value of j is still 1

// values of j is assigned to location arg which is used

// in fun(), value of j is not changed by function call

 arguments passed by reference:
void fun (int &arg) { arg = 2; }
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void fun (int  &arg) { arg  2; }

int j = 1; fun (j); // value of j is 2

// references can be also used as aliases:

int &x = i; // x is an alias for i
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Memory allocationMemory allocation
 automatic memory allocation on the stack

– when function is called, the runtime system allocates 
memory for all the objects defined in that functionmemory for all the objects defined in that function

h k

fun ()
class A { }
void fun() {
A a, b;
int x [10];
… }
fun();

object a
object b

10 int for x

…
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– when function execution is completed, the runtime 
system automatically frees the memory

memory on the stack fun();

Automatic memory on the stackAutomatic memory on the stack

char *fun() {

char buf [100];char buf [100];

get (buf);  // write values to ‘buf’

return buf; }

char *pc = fun(); 
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//memory for ‘buf’ has been freed!
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Free memory allocation on the heapFree memory allocation on the heap

 allocated with operator new () and freed 
with delete ()

 values accessed via pointers

class A { .. }
void fun () {

A *pA = new A;  

object of class A
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// no automatic deleting of memory

delete pA; //frees memory
} free memory on the heap

Bitwise operationsBitwise operations

 how do you represent Modifies in SPA project?

– bit vector with n’th bit corresponding to n’th variablebit vector with n th bit corresponding to n th variable

– n’th bit 1 means that n’th variable is modified in a 
given procedure

– n’th bit 0 means that n’th variable is NOT modified in a 
given procedure

 compact and easy to manipulate representation
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 compact and easy to manipulate representation

 revisit bitwise operations when you plan data 
structures for Modifies and Uses relationships
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Dynamic vs. static bindingDynamic vs. static binding
 overriding of member functions defined in the 

parent class by those from derived classes

d i bi di f i t l b f ti d dynamic binding for virtual member functions and 
static biding for non-virtual ones

class A {
public:
virtual f ();
g (); }B *pB = new B();

A *pA pB;
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class B : public A {
public:
virtual f ();
g (); }

A *pA = pB;

pA -> f(); // dynamic: B::f() is called

pA -> g(); // static: A::g() is called

Part 2:Part 2:

C++ program organizationC++ program organization
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Physical structure of C++ programsPhysical structure of C++ programs
 once you have:

– understood the problem (SPA)

– completed architecture design

– decided upon representation of SPA solution in C++ 

language 

 you will have to organize C++ program into 
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modules implemented in many files

 physical organization of program modules into files 

is a critical success factor in large-scale projects

Typical program modulesTypical program modules

 main module file: contains function main ()
– unattached function main() is called first

 class module files:
– class interfaces in .h files and class 

implementations in .cpp files

 mixed module files:
– contains declarations, included files and 
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,
collection of classes and/or unattached function 
implementations related to a single task

– mixed modules in SPA : parser, query evaluator
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Typical program organizationTypical program organization

module interface module interface module interface

mod1.h mod2.h mod3.h

#include …

int main () { }

services required:

#include

definitions

services required:

----------

module 

services required:

-----------

module main.cpp
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declarations

-----------

module 
implementation

implementation implementation
a .cpp

mod1.cpp mod2.cpp mod3.cpp

#include “mixed.h”

#include <stack>

class A { … }

class B { … }

class C { … }

int fun (int arg);A.h
mixed.h

#include <iostream>

#include “A.h”

int global_count = 0;

int main () { 

A a:

a.fPubA();  }

#include “A.h”

extern global_count;

int fun (int arg);

int A::fPubA () {

global_count++;

}

etc.

#include “A.h”

extern global_count;

// other #include and declarations

// implementation of class B methods:

int B::fPubB () {

A a; stack s; 

global_count++; }
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etc.
// implementation of class C methods:

int C::fPubB () {

A a;

fun (20); }

int fun (int arg) {

// implementation of function fun }

main.cpp A.cpp

mixed.cpp
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About header filesAbout header files
 you can include many library classes/functions:

#include <iostream>, #include <string>, #include <cassert>

 use “include guards” to avoid multiple use include guards  to avoid multiple 
inclusions of the same header:
#ifndef HEAD_A
#define HEAD_A
#include A.h
/// possibly other included headers here
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#endif //HEAD_A

 do not put definitions (only declarations) in 
headers

Proper use of header filesProper use of header files
 chaotic design will result in many dependencies:

mod1.cpp: mod2 cpp: mod3.cpp:

 design program in layers to avoid circular 
inclusions of headers:

pp
#include mod2.h
#include mod3.h

mod2.cpp:
#include mod1.h
#include mod3.h

pp
#include mod1.h
#include mod2.h
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mod1.cpp:
mod2.cpp:
#include mod1.h

mod3.cpp:
#include mod2.h
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Proper use of header files, cont.Proper use of header files, cont.

 too many header files complicate the program
– sometimes it is better to use forward declarations 

th th h drather than headers:

extern int x;

int fun (int arg);

class A; // you may now declare a pointer to class A

pA* A; 
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p

 many .cpp files may include the same header
– design program to minimize the amount of re-

compilation required after modification of a header 

How is executable code produced?How is executable code produced?

mod1.h mod4.hmod3.hmod2.h

main.cpp mod1.cpp mod2.cpp mod3.cpp mod4.cpp

pre-processing

compilation

mod1.o mod2.o mod3.o mod4.omain.o

source code 
without macros
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linking

loading
executable code a.out
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Adopt naming standards, e.g.:Adopt naming standards, e.g.:

 file names: query_eval.h, query-eval.cpp
class name: Cfg, TNode, (or TreeNode)g, , ( )
class TNode {
public:

static TNode *s_root_p; 
//static data member with prefix s_; pointers with suffix _p

TNode *getParent ();
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g ();
private:

int d_nodeCount; // prefix d_ for data members  }
etc.

Documenting module interfacesDocumenting module interfaces
class TNode {

public:

// CONSTRUCTORS:

TNode ();TNode ();

// MODIFIERS (SETTERS):

void setParent (TNode *parent);

// ACEESSORS (GETTERS):

TNode *getParent (); }

 module query_evaluator.cpp does not need all the interface 
operations of class TNode (or TNode)
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p ( )

– use comments to indicate which interface operations of 
class TNode are used in query_evaluator.cpp

 use comments to explain interface operations
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Exceptions and assertionsExceptions and assertions

 Use exceptions to handle abnormal program behavior
– to handle anticipated errorsto handle anticipated errors

 Assertions express your intention as to what a correct 
program behavior should be:
– check if program behaves according to program 

requirements

– serve as documentation, a bridge between code and 
requirements

 Read Section 10.6 in Handbook: Error handling, 
exceptions and assertions in C++
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Advanced C++ featuresAdvanced C++ features

 pointers to functions (unattached and members)

 templates and related classes in STL templates and related classes in STL

 overloading of operations, etc.

------------------------------------------------------

 start by using basic language features, as described 
in this briefing
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 study and apply more advanced features only 
when you need them

--- The End ---


