Question 7 [Algorithm 16 marks].

Let $a[0..n-1]$ be an array of n distinct numbers. If $i < j$ and $a[i] > a[j]$, then the pair (i, j) is called a mismatch of a. For example, the array $a[] = [2, 8, 3]$ has one mismatch, $(1, 2)$, whereas $b[] = [1, 2, 3, 4]$ does not have any mismatches.

(a) List all the mismatches of the array $a = [4, 6, 1, 2]$.

(b) How many arrays of size n have more than $n(n + 1)/2$ mismatches?

(c) Devise an algorithm to calculate the number of mismatches in an integer array a of size n. You may assume that all array elements are distinct and the first element is stored at position 0. You will be given full marks if your solution runs in $O(n \log n)$. A sketch of the algorithm is sufficient.