National University of Singapore
School of Computing
(CS3234 — Logic and Formal Systems October 18, 2004

Assignment 2
(10% of final grade)

Deadline: October 31, 2004

This assignment will expose you to verifying systems with the Symbolic Model Verifier
SMV.

Running SMV

SMV is free software and can be downloaded (together with a user’s manual) from
http://www-2.cs.cmu.edu/ modelcheck/smv.html

SMYV is already installed on the s£3.comp.nus.edu machine and can be used by passing
the following command to the Unix prompt.

/home/course/cs3234/smv/bin/smv <yourfile.smv>

The output of this command will provide a report on the outcome of the verification
process specified in yourfile.smv. If the verification has failed, the report will include a
couterexample showing a computation path that does not satisfy the verification condition.
You can collect this report in a file by redirecting the standard output to a file:

/home/course/cs3234/smv/bin/smv <yourfile.smv> 2>&1 >output.txt

The entire output of your command is collected now in the file output.txt.

A copy of the users manual can be downloaded from the course web page (the link is
provided next to the link for this assignment). We highly recommend reading the manual
before solving this assignment.



The Dining Philosophers Problem

The Dining Philosophers problem is a widely studied resource allocation problem in dis-
tributed computing. Traditionally, the problem is described in terms of the following
informal scenario. There are n philosophers (users) seated around a table, usually think-
ing. Between each pair of philosophers is a single fork (resource). From time to time, any
philosopher might become hungry, and attempt to eat. In order to eat, the philosopher
needs exclusive use of the two adjacent forks. After eating, the philosopher relinquishes
the two forks and resumes thinking. A dining philosophers problem for n = 5 is depicted
in Figure 1.

For the system described above, it would be reasonable to expect that whenever a
philosopher becomes hungry, he would eventually get to eat (progress property). However,
it hapens that the informal description given above allows for many formalizations, and
not all satisfy the progress property given above. In what follows, you will be asked to
solve two exercises. The first one provides a specification of the philosophers’ protocol
and requires you to implement a system of 5 such philosophers and 5 forks in SMV, and
show that the progress property is not satisfied. The second exercise asks you to fix the
system such that it satisfies the progress property, and then show in SMV that the progress
property is indeed verified.

Exercise 1

Consider the protocol given in Figure 2, which specifies the behaviour of a philosopher.
The philosopher starts in the state where he is thinking, and may remain in that state as

R R

5

Figure 1: Dining philosophers problem for n = 5



long as he wants, but not forever. Occasionally, the philosopher may become hungry, and
attept to acquire the forks. The philosopher will remain in the hungry state as long as the
left fork is not available. Once the left fork becomes available, the philosopher must acquire
it, and wait for the right fork. When the right fork becomes available, the philosopher must
also acquire it, and begin eating. The philosopher may eat for as long as he pleases, but
not forever. Once the philosopher has finished eating, he will relinquish the left fork first,
then he will relinquish the right fork, and then resume thinking. You are required to do
the follwing:

e Write the SMV specification for a dining philosophers problem of 5 philosophers and
5 forks, where the behaviour of every philosopher is the one given by the protocol in
Figure 2.

e Add fairness conditions that will ensure that all philosphers are running concurrently,
and that no philospher is thinking forever, or eating forever.

e Make sure that every fork is acquired by at most one philosopher at any one time.
Specify safety conditions to verify this.

e Specify a progress property for every philosopher which states that once the philoso-
pher becomes hungry, he eventually eats.

The SMV program, when run on your specification, should be able to verify that the
safety property is verified, but the progress property is not. The report of a program
property not being satisfied is in the form of a counterexample. Analyze the counterexample
and explain informally the sequence of events that leads to a philosopher starving forever.

Exercise 2

Now, change the system you developed in your solution to your previous exercise such that
progress property is satisfied. Your may pick your changes of your system only from the
following set:

left fork
not available

right fork
not available

Hold left fork

acquire
‘ right fork

L {Holdright fork
relinquish relinquish

right fork left fork

Thinking -
acquire
“ left fork

Figure 2: The behaviour of a philosopher for Exercise 1



A philosopher may pick his forks in any order. He may choose to pick the left fork
first, or the right fork first, or look for the first available fork and pick it. However,
he cannot pick both forks at the same time.

If a philosopher has acquired a fork, and the second fork is not available yet, the
philosopher may choose to relinquish the fork he holds, and return to the hungry
state.

Each philosopher may execute a different protocol. For example, the even-ranked
philosophers may try to acquire the left fork first, while the odd-ranked philosophers
may try to acquire the right fork first.

You are required to do the following.

Provide a formal specification of all the protocols of all philosophers, in the form of
state graphs.

Provide an informal explanation of why you expect that the new protocols lead to
guaranteeing that the philosophers do not starve.

Update your SMV specification to reflect the new protocols. You may need to update
your fairness, safety, and progress as well, such that they would reflect the changes
in the philosophers’ protocols.

Run SMV on your new specification and check that both the safety and the progress
properties are verified.

What to submit

Your submission should be in the form of a small report containing the answers to the two
exercises. For Exercise 1, your report should

justify your design decisions in writing the SMV specification; remember that access
to forks is exclusive, you need to explain how that is achieved;

explain the fairness, safety, and progress conditions (i.e. why you wrote them the
way you wrote them);

include the full SMV specification (i.e. your SMV file), with comments that would
make it as readable as possible;

the output of running SMV on your file, reflecting that the safety property was
verified, whereas the progress property was not verified, and

a comment on the counterexample, explaining informally how the system would get
to a configuration that would allow philosophers to starve.

4



For Exercise 2, your report should

e include the new protocols (in the form of state graphs), specifying the philosophers’
behaviour;

e informal explanations on why the new protocols would guarantee that no philosopher
would starve forever;

e the full SMV specification of the system, with comments that would make it as
readable as possible;

e the output of running SMV on your file, reflecting the fact that all properties have
been verified.

Please submit a hardcopy of your report to me before the deadline (if I'm not in the office,
just slide your report under the door). Also, please submit a softcopy of your report, as
well as your SMV files to me by email.



