
Propositional Logic, continued: Soundness, Completeness, & Special Forms
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� Suppose Φ1 ��������� Φn
�

Ψ holds.

� Hence, there is a proof of Ψ having Φ1 ��������� Φn as premises.

� We proceed by induction on the length of these proofs. We need to reformu-
late the soundness statement such that it is amenable to induction.

M � k � : For all sequents Φ1 ��������� Φn
�

Ψ that have a proof of
length k, it is the case that Φ1 ��������� Φn 	 
 Ψ

We intend to use course-of-values induction on k.

� Technical problem:

– Chopping a proof may nod lead to correct sub-proofs, since some boxes
may still be open.

– However, a chopped proof (a prefix of the sequence of formulas rep-
resenting a proof) may form a correct proof if the assumptions of the
open boxes are added to the premises.
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To solve our technical problem, we change the structure of the proof as
in the following example. Consider the following sequent:

p � q � r
�

p � � q � r �

1 p � q � r premise

2 p assumption

3 q assumption

4 p � q � i 2,3

5 r � e 1,4

6 q � r � i 3–5

7 p � � q � r � � i 2–6

1 /0 p � q � r premise

2 � 2 � p assumption

3 � 2 � 3 � q assumption

4 � 2 � 3 � p � q � i 2,3

5 � 2 � 3 � r � e 1,4

6 � 2 � q � r � i 3–5

7 /0 p � � q � r � � i 2–6

Note: The set at the right of a formula in a proof line grows and shrinks
as a stack, reflecting the way boxes are opened and closed.
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Just for the purpose of proving soundness, we formally change the defi-
nition of the proof as follows.

Definition: A proof of the sequent Γ
�

Ψ is a sequence of pairs� � d1 � χ1 � ��������� � dk � χk ��� where:
(1) d1 
 /0;
(2) each di is a subset of � 1 ��������� i � ;
(3) for each i, χi is either

– a premise (i.e., χi � Γ), or
– an assumption (i.e. χi � di), or
– χi follows from previous lines by applying deduction rules;

(4) for each i, di is equal to
– di � 1 if no box was closed/opened at line i;
– di � 1 � � i � if a box is opened on line i;
– di � 1 � � ρ � if a box with assumption at line rho was closed

The length of such a proof is k.
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Our inductive statement now becomes:

For any proof of length k
� � d1 � χ1 � ������� � � dk � χk ��� ,

and any assignment of truth values that makes the
premises in Γ and the assumptions in dk true, it is
the case that χk evaluates to T .

When there is a chopping with no open boxes, this hypothesis precisely
covers the semantic entailment.



Soundness (5)

CS4231 — Logic and Formal Systems — Lecture 02 — 19/08/04Slide 6

We now proceed with the proof.

Base case k 
 1: the proof has length 1, hence it is of the form

1 /0 χ premise

The statement is obviously true, any assignment of truth values
that makes all the premises true, shall make this premise true as
well.

Induction case k � 1: Suppose we have a proof

1 /0 χ1 premise
...

k dk χk justi f ication � k
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justification-k is a natural deduction rule, hence we proceed by case
analysis.

Φ Ψ

Φ � Ψ

� i
Φ Ψ

Φ

� e1
Φ Ψ

Ψ

� e2

Φ

Φ � Ψ
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Ψ

Φ � Ψ

� i2

Φ � Ψ

Φ
.
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Ψ
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Φ
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Φ Φ � Ψ

Ψ

� e

Φ
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�
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� i: It must be the case that χ 
 χ1 � χ2, with χi appearing at line ki
�

k, with i � � 1 � 2 � . The formulas χ1, χ2 have shorter proofs, and
therefore, using the induction hypothesis, they have the truth value
T . Using the truth table for � , we conclude that the truth value of
χ is T .

�
e: It must be the case that some formula χ1

� χ2 appears in in the
proof, and that we have two boxes with assumptions χ1 and χ2 and
conclusion χ. The proof of χ1

� χ2 is shorter hence, according to
the induction hypothesis, it has a truth value of T . According to the
truth table of

�
, either χ1 or χ2 have the truth value T . Assume it

is χ2 (the case when χ1 has a truth value of T is similar). Then, the
assumption χ2 of the second box is true, and using the induction
hypothesis, its conclusion χ has the truth value T .

The other cases are similar.
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Theorem: Whenever Φ1 ��������� Φn 	 
 Ψ holds, there exists a natural de-
duction proof for the sequent Φ1 ��������� Φn

�
Ψ.

The proof consists of three steps:

Step 1: 	 
 Φ1 � � Φ2 � ������� � Φn � Ψ ������� ���
Step 2:

�
Φ1 � � Φ2 � ������� � Φn � Ψ ������� ���

Step 3: Φ1 ��������� Φn
�

Ψ

Definition: A formula of propositional logic is a tautology if it is true
for all assignments of truth values to its propositional atoms, i.e. if 	 
 Φ.
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Step 1: 	 
 Φ1 � � Φ2 � � ����� � Φn � Ψ � ����� ���
This step is easy. Suppose Φ1 ��������� Φn 	 
 Ψ holds. The implication truth table shows
that the only possiblity for 	 
 Φ1 � � Φ2 � ������� � Φn � Ψ � ����� ��� to fail is to have an
assignment of truth values to its atoms that results in all Φ1 ��������� Φn having the truth
value T and Ψ having the truth value F; — but this is impossible, as it contradicts
the hypothesis.

Step 3: Φ1 ��������� Φn
�

Ψ

This step is also easy. Suppose
�

Φ1 �
� Φ2 � ������� � Φn � Ψ ������� ��� holds, i.e.
has a natural deduction proof Π. Then
we augment this proof by adding the
premises Φ1 ��������� Φn to the front, and then
using the rule � e at the end to produce
Ψ. In other words, we produce the proof:

Φ1
...

Φn

Π
...

Φ1
� � Φ2

� ��������� Φn
� Ψ � ����� �	�

Ψ � e
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The core of the completeness proof is Step 2, which requires to show the
following:

If 	 
 Φ holds, then
�

Φ holds. In other words, if
Phi is a tautology, then Φ is a theorem.

The idea of the proof is the following:

� Suppose 	 
 Φ holds.

� If formula Ψ has n atoms p1 ��������� pn, then Φ has truth value T for
all the 2n lines in its truth table.

� Then, we ”encode” each line in the truth table of Φ as a sequent
and assemble them into a proof of Φ using the disjunction rules.
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The first part of the proof is based on the following lemma.

Lemma: Let Φ be a formula containing the propositional atoms
p1 ������� � pn, and l a line of Φ’s truth table. Let p̂i be pi if the entry in
line l of pi is T , otherwise p̂i is � pi. Then,

p̂1 ��������� p̂n
�

Φ is provable if the entry for Φ in line l is T ;

p̂1 ��������� p̂n
�

� Φ is provable if the entry for Φ in line l is F .
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The proof of the lemma is by course of values induction on the height of
the syntax tree of Ψ.

Base case: If Φ is an atom (i.e. a formula of height 1), then we have to
show that p

�
p and � p

�
� p hold. This is immediate.
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Induction case: The height of Φ is greater than 1. Then, we have the following cases.

� Φ is of the form � Φ1.

– If Φ evaluates to T , then Φ1 evaluates to F ; Φ1 has the same atoms as Φ,
but a lower height, hence by induction hypothesis p̂1 ��������� p̂n

�
� Φ1; finally

� Φ1 is Φ, hence we are done.

– If Φ evaluates to F , then Φ1 evaluates to T ; by induction hypothesis we
get p̂1 ��������� p̂n

�
Φ1, which can be extended to p̂1 ������� � p̂n

�
� � Φ1 using the

� � i rule; but � � Φ1 is � Φ1, hence we are done.

� Φ is of the form Φ1
� Φ2, where � � � � � � � � . Let q1 ��������� ql be the atoms of Φ1

and r1 ������� � rk the atoms of Φ2, where � q1 ��������� ql � � � r1 ��������� rk � 
 � p1 ��������� pn � .
We are left with proving that

q̂1 ��������� q̂l
�

Ψ1 and r̂1 ��������� r̂k
�

Ψ2

implies p̂1 ������� � p̂n
�

Ψ1 � Ψ2

for appropriate formulas Ψ1 and Ψ2.
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We show the proof for � 
 � , that is, we consider the case when Φ 
 Φ1 � Φ2.

� If both Φ1 and Φ2 evaluate to T , then by the induction hypothesis
q̂1 ��������� q̂l

�
Φ1 and r̂1 ��������� r̂k

�
Φ2, hence p̂1 ��������� p̂n

�
Φ1 � Φ2, and we are

done.

� If Φ1 evaluates to F and Φ2 evaluates to T , then we have q̂1 ��������� q̂l
�

� Φ1

and r̂1 ������� � r̂k
�

Φ2, hence p̂1 ��������� p̂n
�

� Φ1 � Φ2 We are left with proving

p̂1 ��������� p̂n
�

� Φ1 � Φ2 implies p̂1 ��������� p̂n
�

� � Φ1 � Φ2 �

(left as an exercise)

� The other two cases are similar, requiring the following proofs:

Φ1 � � Φ2
�

� � Φ1 � Φ2 �
� Φ1 � Φ2

�
� � Φ1 � Φ2 �
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If Φ is of the form Φ1
� Φ2, we can reduce the proof to the search for the

following proofs.

Φ1 � Φ2
�

Φ1
� Φ2

Φ1 � � Φ2
�

Φ1
� Φ2

� Φ1 � Φ2
�

Φ1
� Φ2

� Φ1 � � Φ2
�

� � Φ1
� Φ2 �

If Φ is of the form Φ1 � Φ2, we can reduce the proof to the search for
the following proofs.

Φ1 � Φ2
�

Φ1 � Φ2

Φ1 � � Φ2
�

� � Φ1 � Φ2 �
� Φ1 � Φ2

�
Φ1 � Φ2

� Φ1 � � Φ2
�

Φ1 � Φ2
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The last piece of the puzzle is to assemble these proofs of the form

p̂1 ��������� p̂n
�

Φ

each representing a line in the truth table, into a proof of
�

Φ, without
premises.

We use the disjunction rules to generate the lines of the truth table, then
we appropriately insert the above proofs.

We exemplify this procedure for the case of two atoms, for the tautology�
p � q � p.
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Assembling the proof for the tautology
�

p � q � p.

1 p
�

� p LEM

2 p ass � p ass

3 q
�

� q LEM q
�

� q LEM

4 q ass � q ass q ass � q ass

5
...
...

...
...

...
...

...
...

6

7 p � q � p p � q � p p � q � p p � q � p

8 p � q � p
�

e p � q � p
�

e

9 p � q � p
�

e
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Definitions:

� Let Φ and Ψ be propositional logic formulas. They are semantically
equivalent iff Φ 	 
 Ψ and Ψ 	 
 Φ. We denote this by Φ � Ψ.

� Φ is valid iff 	 
 Φ.

Remarks:

� Two formulas Φ and Ψ are semantically equivalent iff 	 
 � Φ � Ψ � �
� Ψ � Φ � .

� Because of soundness and completeness of propositional logic, se-
mantic equivalence is identical with provable equivalence

� � Φ �
Ψ � � � Ψ � Φ � . (This is a fortunate case, most logics are not complete).

� Our aim is to transform formulas into equivalent ones for which check-
ing validity is easier.
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Definitions:

� A literal is either an atom p, or the negation of an atom � p.

� A formula Φ is in conjunctive normal form (CNF) if it is of the
form Ψ1 � Ψ2 � ����� � Ψn, for some n

�
1, where each Ψi is a dis-

junction of literals, for all i � � 1 ��������� n � .

Note: Sometimes we include the case n 
 0, in which case, by conven-
tion, the term is � .

Examples of CNFs:
� � q

�
p

�
r � � � � p

�
r � � q

� p �
r � � � � p

�
r � � � p �

� r �
Not in CNF:

� � � q �
p � �

r � � � � p
�

r � � q
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Lemma: A disjunction of literals L1
�

L2
�
�����

�
Ln is valid iff there exist i, j, with

1 � i � j � n, such that Li is � L j.

Proof:

� If there exist i, j such that Li is � L j, then clearly L1
�

L2
�
�����

�
Ln evaluates

to T for all assignments.

� For the converse, if no literal has a matching negation, then:

– For each positive literal we assign F to the corresponding atom.

– For each negative literal we assign T to the corresponding atom.

– This assignment falsifies the disjunction, which is impossiible. (Ex-
ample: for � q

�
p

�
r, take p and r to be true, and q to be false and q

to be true.)

– Hence, there exist i, j such that Li is � L j.
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Definition: A formula Ψ is satisfiable if there exists an assignment of
truth values to its propositional atoms such that Φ is true.

Proposition: A propositional logic formula Φ is satisfiable iff � Φ is not
valid.

Proof:

� If Φ is satisfiable, then there exists a valuation (assignment of truth
values to its atoms) which makes Φ true. For this valuation � Φ has
the truth value F , hence � Φ cannot be valid.

� Conversely, if � Φ is not valid, then there exists a valuation for
which � Φ has the truth value F . This valuation makes Φ have the
truth value T , hence Φ is satisfiable.

This is a simple, but very useful result.
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� and
�

are idempotent
Φ � Φ � Φ
Φ � Φ � Φ

� and
�

are commutative
Φ � Ψ � Ψ � Φ
Φ � Ψ � Ψ � Φ

� and
�

are associative
Φ � � Ψ � η � � � Φ � Ψ � � η
Φ � � Ψ � η � � � Φ � Ψ � � η

� and
�

are absorbative
Φ � � Φ � η � � Φ
Φ � � Φ � η � � Φ

� and
�

are distributive
Φ � � Ψ � η � � � Φ � Ψ � � � Φ � η �
Φ � � Ψ � η � � � Φ � Ψ � � � Φ � η �

Rules for T and F
F � Φ � F Φ � � Φ � F
T

� Φ � T Φ �
� Φ � T

The de Morgan rules
� � Φ � Ψ � � � Φ �

� Ψ
� � Φ � Ψ � � � Φ � � Ψ

Double negation rules
� � Φ � Φ
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We present an algorithm to compute a CNF formula equivalent to a given
arbitrary formula Φ. The algorithm is deterministic and computes a
unique CNF for any formula.
The algorithm is described as:

CNF(NNF(IMPL FREE(Φ)))

for a given formula Φ. The CNF, NNF, and IMPL FREE functions shall
be discussed shortly.
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function IMPL FREE(Φ) :
/* precondition: Φ is an arbitrary formula */
/* postcondition: returns an implication free formula equivalent to Φ */
begin function

case
Φ is a literal: return Φ
Φ is � Φ1: return � � IMPL FREE � Φ1 ���
Φ is Φ1 � Φ2: return IMPL FREE � Φ1 � � IMPL FREE � Φ2 �
Φ is Φ1

� Φ2: return IMPL FREE � Φ1 � �
IMPL FREE � Φ2 �

Φ is Φ1 � Φ2: return � IMPL FREE � Φ1 � �
IMPL FREE � Φ2 �

end case
end function
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Let Φ 
 � p � q � p � � r � q � .

IMPL FREE � Φ �

 � IMPL FREE � � p � q � �

IMPL FREE � p � � r � q ���

 � ��� IMPL FREE � � p ��� � IMPL FREE � q ��� �

IMPL FREE � p � � r � q ���

 � ��� � p � � IMPL FREE � q ��� �

IMPL FREE � p � � r � q ���

 � ��� � p � � q � �

IMPL FREE � p � � r � q ���

 � ��� � p � � q � � � p � � � IMPL FREE � r � �

IMPL FREE � q �����

 � ��� � p � � q � � � p � � � r

�
IMPL FREE � q �����


 � ��� � p � � q � � � p � � � r
�

q ���
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function NNF(Φ) :
/* precondition: Φ is implication free */
/* postcondition: returns an NNF formula equivalent to Φ */
begin function

case
Φ is a literal: return Φ
Φ is � � Φ1: return NNF � Φ1 �
Φ is Φ1 � Φ2: return NNF � Φ1 � � NNF � Φ2 �
Φ is Φ1

� Φ2: return NNF � Φ1 � �
NNF � Φ2 �

Φ is � � Φ1 � Φ2 � : return NNF � � Φ1
�

� Φ2 �
Φ is � � Φ1

� Φ2 � : return NNF � � Φ1 � � Φ2 �
end case

end function
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Let Φ 
 � ��� � p � � q � � � p � � � r
�

q ��� .

NNF � Φ �

 NNF � � ��� � p � � q ��� �

NNF � p � � � r
�

q ���

 NNF � � � � p � �

� q ��� �
NNF � p � � � r

�
q ���


 � NNF � � � p ��� � � NNF � � q ��� �
NNF � p � � � r

�
q ���


 p
� � NNF � � q ��� �

NNF � p � � � r
�

q ���

 p

�
� q

�
NNF � p � � � r

�
q ���


 p
�

� q
� � NNF � p � � NNF � � r

�
q ���


 p
�

� q
� � p � NNF � � r

�
q ���


 p
�

� q
� � p � � NNF � � r � �

NNF � q �����

 p

�
� q

� � p � � � r
�
NNF � q �����


 p
�

� q
� � p � � � r

�
q ���
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function CNF(Φ) :
/* precondition: Φ is implication and in NNF */
/* postcondition: returns an CNF formula equivalent to Φ */
begin function

case
Φ is a literal: return Φ
Φ is Φ1 � Φ2: return CNF � Φ1 � � CNF � Φ2 �
Φ is Φ1

� Φ2: return DISTR � CNF � Φ1 � � CNF � Φ2 ���
end case

end function
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function DISTR(Φ1,Φ2) :
/* precondition: Φ1, Φ2 are in CNF */
/* postcondition: returns an CNF formula equivalent to Φ1

� Φ2 */
begin function

case
Φ1 is Φ11 � Φ12: return DISTR � Φ11 � Φ2 � � DISTR � Φ12 � Φ2 �
Φ2 is Φ21 � Φ22: return DISTR � Φ1 � Φ21 � � DISTR � Φ1 � Φ22 �
otherwise: return Φ1

� Φ2

end case
end function
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Let Φ 
 p
�

� q
� � p � � � r

�
q ��� .

CNF � Φ �

 CNF � p �

� q
� � p � � � r

�
q �����


 DISTR � CNF � p �
� q � � CNF � p � � � r

�
q �����


 DISTR � p �
� q � CNF � p � � � r

�
q �����


 DISTR � p �
� q � p � � � r

�
q ���


 DISTR � p �
� q � p � � DISTR � p �

� q � � r
�

q �

 � p �

� q
�

p � � � p �
� q

�
� r

�
q �
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Definitions:

� A Horn clause is a formula of the form p1 � p2 � ����� � pk � q,
where k

�
1, and p1 � p2 ��������� pk � q are atoms, � , or � .

� A Horn formula is a conjunction of Horn clauses, i.e. a formula
Φ of the form Ψ1 � Ψ2 � ����� � Ψn, (n

�
1), such that each Ψi is a

Horn clause, i � � 1 ��������� n � .

Horn clauses have an efficient procedure to decide their satisfiability, and
are the basis for logic programming.



Horn Clauses Examples
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Examples (yes)

� p � q � s � p � � � q � r � p � � � p � s � s �
� p � q � s � � � � � q � r � p � � � � � s �
� p1 � p3 � p5 � p13 � � � � � p5 � � � p5 � p11 � � �

Examples (no)

� p � q � s � � p � � � q � r � p � � � p � s � s �
� p � q � s � � � � � � q � r � p � � � � � s �
� p1 � p3 � p5 � p13 � p27 � � � � � p5 � � � p5 � p11 � � �



HORN
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function HORN(Φ) :
/* precondition: Φ is a Horn formula*/
/* postcondition: decides the satisfiability of Φ*/
begin function

if Φ contains a clause � � � then return unsatisfiable
else mark all atoms p where � � p is a clause of Φ

while there is a Horn clause p1 � ����� pki � qi of Φ
such that all p j are marked, but qi isn’t do

if qi � � then return ’unsatisfiable’
else mark qi for all Horn clauses of Φ

end while
return ’satisfiable’

end function

Theorem: The HORN algorithm is correct: it always terminates and its
answer is ’satisfiable’ iff the given Horn formula is satisfiable.


