Predicate Logic (1)

The Need for a Richer Language

% The need for a richer language
% Predicate logic as a formal language

— terms — variables, functions

— formulas — predicates, quantifiers
- free and bound variables

— substitution

% Proof theory of predicate logic

— Natural deduction rules

Propositional Logic:

e Study of declarative sentences, statements about the world which can be
given a truth value

e Dealt very well with sentence components like: not, and, or, if - - - then - - -

e Limitations: cannot deal with modifiers like there exists, all, among, only.
Example: “Every student is younger than some instructor.”

e We could identify the entire phrase with the propositional symbol p.

e However, the phrase has a finer logical structure. It is a statement about the
following properties:
— being a student
— being an instructor

— being younger than somebody else

Slide 1 €$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Slide 2 C$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Predicates, Variables and Quantifiers

More Examples

Properties are expressed by predicates. S, /, Y are predicates.

S(andy): Andy is a student.

I(paul): Paul is an instructor.

Y (andy,paul): Andy is younger than Paul.
Variables are placeholders for concrete values.

S(x): x is a student.

I(x): x is an instructor.

Y (x,y): x is younger than y.

Quantifiers make possible encoding the phrase:
“Every student is younger than some instructor.”
Two quantifiers: V — forall, and 3 — exists.

Encoding of the above sentence:

Vx(S(x) = (Fy(I(y) AY (x,))))

“No books are gaseous. Dictionaries are books. Therefore, no dictionary is
gaseous.”

We denote: B(x): x is a book
G(x): x is gaseous
D(x): xis a dictionary

—3x (B(x) AG(x))F,Vx (D(x) — B(x))

—dx (D(x) A G(x))

“Every child is younger than his mother”

We denote: C(x): xis a child
M(x,y) : xis y’s mother

VaVy (C(x) AM(x,y) = Y (x,y))

Denote m(x): mother of x Vx (C(x) = Y (x,m(x)))

Using the function m to encode the “mother of” relationship
is more appropriate, since every person has a unique mother.

Slide 3 €S3234 Logic and Formal Systems Lecture 03 26/08/04

Slide 4 €83234 Logic and Formal Systems Lecture 03 26/08/04.

More Examples (2)

Predicate Logic as a Formal Language

“Andy and Paul have the same maternal grandmother”

VXVyWuv(M(x,y) AM(y,a) AM(u,v) AM(v, p) = x = u)

‘We have introduced a new, special predicate: equality.

Alternative representation:

m(m(a)) = m(m(p))

Consider the relationship B(x,y): x is the brother of y. This relationship
must be encoded as a predicate, since a person may have more than one
brother.

Two sorts of “things” in a predicate formula:

e Objects such as @ (Andy) and p (Paul). Function symbols also refer to
objects. These are modeled by ferms.

e Expressions that can be given truth values. These are modeled by formulas.
A predicate vocabulary consists of 3 sets:

e Predicate symbols P; | Each predicate and function symbol comes with a fixed
e Function symbols F; | arity (i.e. number of arguments)
e Constants C.

Elements of the formal language of predicate logic:

Terms
Formulas
Free and bound variables

L]
L]
L]
e Substitution

Slide 5 €$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Slide 6 C$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Terms

Definition: Terms are defined as follows:

e Any variable is a term;

e Any constant in (is a term;

e If7y,....1, are terms and f € F has arity n, then f(¢1,...,1,) is a term;
e Nothing else is a term.

Backus-Naur definition: 1 ::= x|c|f(r,...,1) where x represents variables, ¢
represents constants in C, and f represents function in with arity 7.

Remarks:
e The first building blocks of terms are constants and variables.

e More complex terms are built from function symbols using previously buit
terms.

e The notion of terms is independent on the sets and ¥ .

Formulas

Slide 7 €$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Definition: We define the set of formulas over (F,%) inductively, using the
already defined set of terms over ¥.

e If P is a predicate with n > | arguments, and 7y,...,/, are terms over 7,
then P(1y,...,1,) is a formula.

e If @ is a formula, then so is ~®.

o If ® and ¥ are formulas, then so are P AV, DV, D — V.

e If @ is a formula and x is a variable, then Vx® and =x ® are formulas.

e Nothing else is a formula.

BNF definition:
D = P(t1,...1;) | (~DP) | (PAD) [(D VD) | (P — D) | (VxD) | (TxD)
where P is a predicate of arity 7, 7; are terms, i € {1,...,n}, x is a variable.

Convention: We retain the usual binding priorities of the connectives —,A, V, —.
We add that Vx and Jx bind like —.

Slide 8 C$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Example

Consider translating the sentence:
“Every son of my father is my brother”
Two alternatives:

e “Father of” relationship encoded as a predicate.
S(x,y): x is the son of y.
F(x,y): x is the father of y.
B(x,y): xis the brother of y.
m: constant, denoting “myself”.
Translation: VxVy (F (x,m) A S(y,x) — B(y,m))
e “Father of” relationship encoded as a function.
[(x): father of x.
Translation: Vx (S(x, f(m)) — B(x,m))

Free and Bound Variables

Slide 9 €S3234 Logic and Formal Systems Lecture 03 26/08/04

Definition: Let ® be a formula in predicate logic. An occurrence of x
in @ is free in @ if it is a leaf node in the parse tree of ® such that there
is no path upwards from that node x to a node Vx or Jx. Otherwise, that
occurrence x is called bound. For Vx®, we say that ® — minus any of
its sub-formulas Jx¥, or Vx¥ — is the scope of Vx, respectively Jx.

Formula:
Vx((P(x) = O(x)) AS(x,y))
Scope of Vx
x is bound.

yis free.

Slide 10 €83234 Logic and Formal Systems Lecture 03 26/08/04.

Examples of Free and Bound Variables

Formula: (Vx(P(x) A Q(x))) = (=P(x) VO(y))

Parse tree:

Substitution

Slide 11 €$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Variables are placeholders, so we must have means of replacing them with more
concrete information.

Definition: Given a variable x, a term 7, and a formula @, we define ®[7 /x] to be
the formula obtained by replacing each free occurrence of variable x in ® with 7.

(Fx(PE) AQ(x))) = (=P(x) VRIS (x,3) /4] is
(Wx (PR A Q) = (=P(f(x:3)) V Q)

Slide 12 C$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Substitution (2)

Definition: Given a term 7, a variable x, and a formula ®, we say that ¢
is free for x in @ if no free x leaf in @ occurs in the scope of Vy or Jy,
for every variable y occurring in .

Remark: If 7 is not free for x in @, then the substitution ®[r/x| has
unwanted effects.

Example:

(SG) A (Vy (P(x) = Q) [y/+] is SG) A (Vy (P(y) = Q())

Avoid this by renaming Vy into Vz.

(S A (V2 (P(x) = Q) ¥/ is S() A (V2 (P(y) = Q(2)))

Slide 13 €$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Proof Theory of Predicate Logic

e Natural deduction rules for propositional logic are still valid
e Natural deduction rules for predicate logic:

— proof rules from propositional logic;
— proof rules for equality;

— proof rules for universal quantification;

proof rules for existential quantification.

e Quantifier equivalences

Slide 14 C$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Proof Rules for Equality

n=n CD[I]/,\‘]

- =i e B

t=t D1y /x]

Convention: When we write a substitution in the form ®[r/x], we implicitly
assume that 7 is free for x in @.

Proof example:
x+l=1+x,(x+1>1)—> @x+1>0)F(14+x>1)— (1+x>0)
1 x+1=1+x premise
2 (x+1>1)—(x+1>0) premise
3 (I+x>1)—=(1+x>0) =el2

Slide 15 €S3234 Logic and Formal Systems Lecture 03 26/08/04

Proof Rules for Universal Quantification

X0

we 1o/
o C Vxd

Proof examples:

Vx (P(x) = Q(x)),VxP(x) - VxQ(x) P(t),Yx (P(x) = —Q(x)) - =Q(r)

1 Vx (P(x) = Q(x)) premise 1 P(t) premise
2 VxP(x) premise 2 Vx(P(x) »—-0(x)) premise
3 x0 P(xo) = O(xo) Vxel 3 p(t) = =0(t) Vxe?2

4 P(xo) Vie?2 4 -0(r) —e3l
5 QO(xp) —e 34

6 VxQ(x) Vxi3-5

Side 16 S Logicand Formal Systems Locure 03 26008004

Proof Rules for Existential Quantification

xo ®@[xo/x]
Ix D :
Dr/x] . x
dxi
Ix® x

Side condition: xg

doesn't occur in dxe

Proof examples: Vi (P(x) = Q(x)), 2 P(x) F Ix O(x)

Ve ke 1 Vx (P(x) = O(x)) premise
2 IP(x) premise
1 Vx® premise X
3 X0 P(xo) assumption
2 ®x/x] Vxel
4 P(x0) = O(xo) Vxel
3 Ix® dxi2
5 0(xo) —e43
6 IxQ(x) dxi5
7 IxQ(x) dxe2,3-6

Slide 17 €$3234 — Logic and Formal Systems — Lecture 03 — 26/08/04

Another Example

A P(x),YaVy (P(x) = O(»)) - Yy O(y)

1 IxP(x) premise
2 Vxvy (P(x) = O(y)) premise
3 Yo
4 X0 P(x0) assumption
5 Yy (P(x0) = Q(y)) Vxe?2
6 P(x0) = Q(y0) Vye?2
7 0O(vo) —64
8 0O(yo) dxe 1,4-7
9 vy Q(y) Vyi3-8
Side 15 53234 — Logic and Formal Systmns — Lecture 03 — 26/08004

