\star The need for a richer language

- \star Predicate logic as a formal language
 - terms —variables, functions
 - formulas predicates, quantifiers
 - free and bound variables
 - substitution
- \star Proof theory of predicate logic
 - Natural deduction rules

Propositional Logic:

- Study of declarative sentences, statements about the world which can be given a truth value
- Dealt very well with sentence components like: *not*, *and*, *or*, *if* ··· *then* ···
- Limitations: cannot deal with modifiers like *there exists*, *all*, *among*, *only*.

Example: *"Every student is younger than some instructor."*

- We could identify the entire phrase with the propositional symbol *p*.
- However, the phrase has a finer logical structure. It is a statement about the following properties:
 - being a student
 - being an instructor
 - being younger than somebody else

Properties are expressed by predicates. *S*, *I*, *Y* are *predicates*.

S(andy): Andy is a student.I(paul): Paul is an instructor.Y(andy,paul): Andy is younger than Paul.Variables are placeholders for concrete values.S(x): x is a student.I(x): x is an instructor.Y(x,y): x is younger than y.

Quantifiers make possible encoding the phrase:

"Every student is younger than some instructor."

Two quantifiers: \forall —*forall*, and \exists —*exists*.

Encoding of the above sentence:

 $\forall x(S(x) \to (\exists y(I(y) \land Y(x,y))))$

"No books are gaseous. Dictionaries are books. Therefore, no dictionary is gaseous."

We denote: B(x): x is a book G(x): x is gaseous D(x): x is a dictionary $\neg \exists x (B(x) \land G(x)), \forall x (D(x) \rightarrow B(x)) \\ \vdash \\ \neg \exists x (D(x) \land G(x))$

"Every child is younger than his mother"

We denote: C(x): x is a child M(x,y) : x is y's mother $\forall x \forall y (C(x) \land M(x,y) \rightarrow Y(x,y))$

Denote m(x): mother of x $\forall x (C(x) \rightarrow Y(x, m(x)))$

Using the function m to encode the "mother of" relationship is more appropriate, since every person has a unique mother.

"Andy and Paul have the same maternal grandmother"

 $\forall x \forall y \forall u \forall v (M(x,y) \land M(y,a) \land M(u,v) \land M(v,p) \to x = u)$

We have introduced a new, special predicate: equality.

Alternative representation:

m(m(a)) = m(m(p))

Consider the relationship B(x, y): x is the brother of y. This relationship must be encoded as a predicate, since a person may have more than one brother.

Two sorts of "things" in a predicate formula:

- Objects such as *a* (Andy) and *p* (Paul). Function symbols also refer to objects. These are modeled by *terms*.
- Expressions that can be given truth values. These are modeled by *formulas*.

A predicate vocabulary consists of 3 sets:

- **Predicate symbols** \mathcal{P} ; Cach predicate and function symbol comes with a fixed
- Function symbols \mathcal{F} ; $\int arity$ (i.e. number of arguments)
- Constants C.

Elements of the formal language of predicate logic:

- Terms
- Formulas
- Free and bound variables
- Substitution

Terms

Definition: *Terms* are defined as follows:

- Any variable is a term;
- Any constant in *C* is a term;
- If t_1, \ldots, t_n are terms and $f \in \mathcal{F}$ has arity *n*, then $f(t_1, \ldots, t_n)$ is a term;
- Nothing else is a term.

Backus-Naur definition: t ::= x | c | f(t, ..., t) where *x* represents variables, *c* represents constants in *C*, and *f* represents function in \mathcal{F} with arity *n*.

Remarks:

- The first building blocks of terms are constants and variables.
- More complex terms are built from function symbols using previously buit terms.
- The notion of terms is independent on the sets \mathcal{C} and \mathcal{F} .

Formulas

Definition: We define the set of *formulas* over $(\mathcal{F}, \mathcal{P})$ inductively, using the already defined set of terms over \mathcal{F} .

- If *P* is a predicate with $n \ge 1$ arguments, and t_1, \ldots, t_n are terms over \mathcal{F} , then $P(t_1, \ldots, t_n)$ is a formula.
- If Φ is a formula, then so is $\neg \Phi$.
- If Φ and Ψ are formulas, then so are $\Phi \land \Psi, \Phi \lor \Psi, \Phi \to \Psi$.
- If Φ is a formula and x is a variable, then $\forall x \Phi$ and $\exists x \Phi$ are formulas.
- Nothing else is a formula.

BNF definition:

$$\Phi ::= P(t_1, \ldots t_n) | (\neg \Phi) | (\Phi \land \Phi) | (\Phi \lor \Phi) | (\Phi \to \Phi) | (\forall x \Phi) | (\exists x \Phi)$$

where *P* is a predicate of arity *n*, t_i are terms, $i \in \{1, ..., n\}$, *x* is a variable.

Convention: We retain the usual binding priorities of the connectives $\neg, \land, \lor, \rightarrow$. We add that $\forall x$ and $\exists x$ bind like \neg .

Example

Consider translating the sentence:

"Every son of my father is my brother"

Two alternatives:

• "Father of" relationship encoded as a predicate.

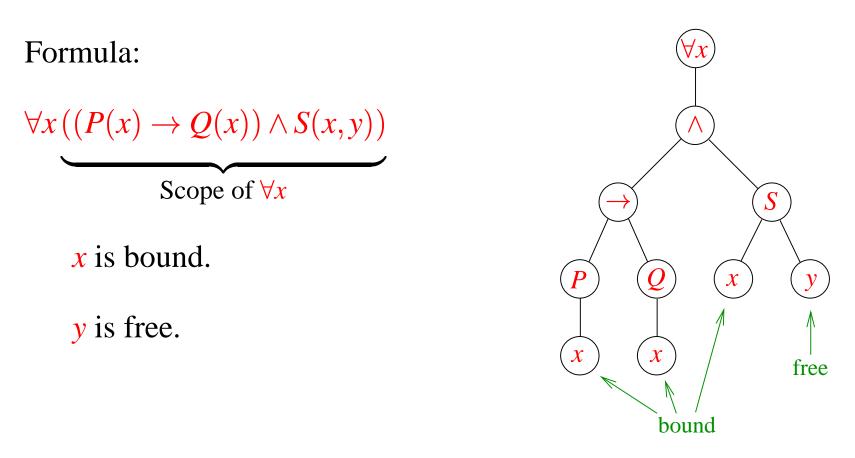
S(x,y): x is the son of y.
F(x,y): x is the father of y.
B(x,y): x is the brother of y.
m: constant, denoting "myself".

Translation: $\forall x \forall y (F(x,m) \land S(y,x) \rightarrow B(y,m))$

• "Father of" relationship encoded as a function. f(x): father of x.

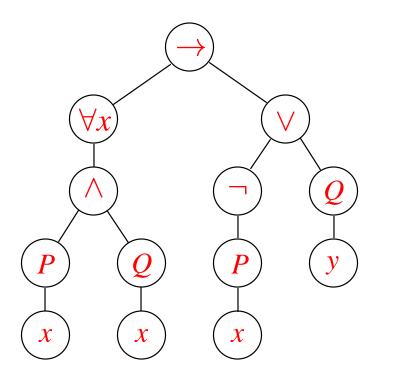
Translation: $\forall x (S(x, f(m)) \rightarrow B(x, m))$

Definition: Let Φ be a formula in predicate logic. An occurrence of x in Φ is *free in* Φ if it is a leaf node in the parse tree of Φ such that there is no path upwards from that node x to a node $\forall x$ or $\exists x$. Otherwise, that occurrence x is called *bound*. For $\forall x \Phi$, we say that Φ —minus any of its sub-formulas $\exists x \Psi$, or $\forall x \Psi$ —is the scope of $\forall x$, respectively $\exists x$.



Formula: $(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$

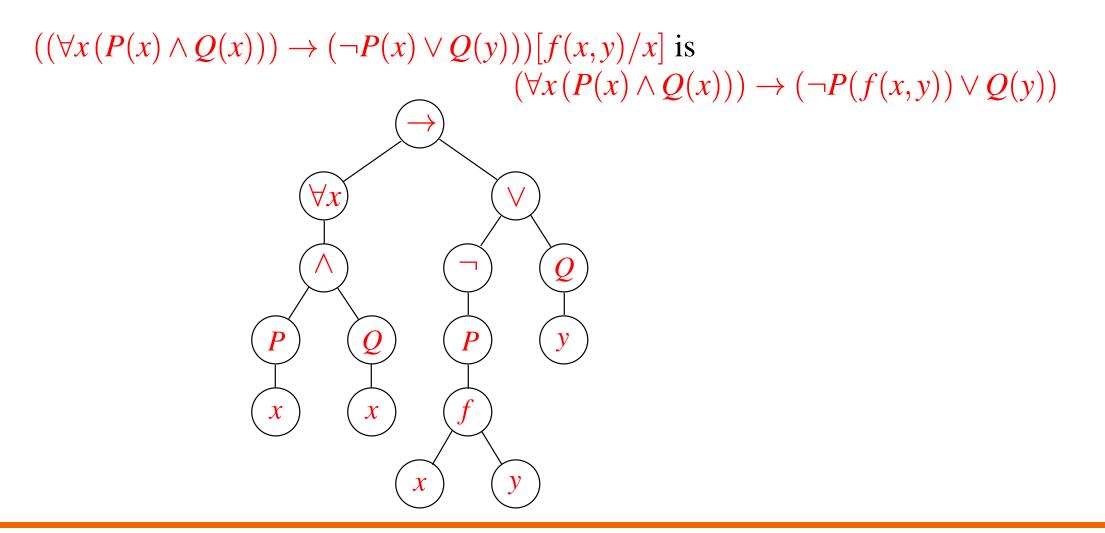
Parse tree:



Substitution

Variables are placeholders, so we must have means of *replacing* them with more concrete information.

Definition: Given a variable *x*, a term *t*, and a formula Φ , we define $\Phi[t/x]$ to be the formula obtained by replacing each free occurrence of variable *x* in Φ with *t*.



Definition: Given a term *t*, a variable *x*, and a formula Φ , we say that *t* is *free for x in* Φ if no free *x* leaf in Φ occurs in the scope of $\forall y$ or $\exists y$, for every variable *y* occurring in *t*.

Remark: If *t* is not free for *x* in Φ , then the substitution $\Phi[t/x]$ has unwanted effects.

Example:

 $(S(x) \land (\forall y (P(x) \rightarrow Q(y))))[y/x]$ is $S(y) \land (\forall y (P(y) \rightarrow Q(y)))$

Avoid this by renaming $\forall y$ into $\forall z$.

 $(S(x) \land (\forall z (P(x) \to Q(z))))[y/x]$ is $S(y) \land (\forall z (P(y) \to Q(z)))$

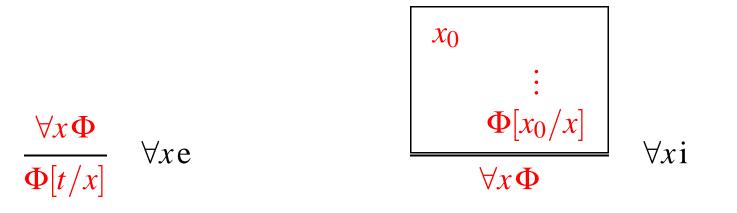
- Natural deduction rules for propositional logic are still valid
- Natural deduction rules for predicate logic:
 - proof rules from propositional logic;
 - proof rules for equality;
 - proof rules for universal quantification;
 - proof rules for existential quantification.
- Quantifier equivalences

$$\frac{t_1 = t_2 \quad \Phi[t_1/x]}{\Phi[t_2/x]} = e$$

Convention: When we write a substitution in the form $\Phi[t/x]$, we implicitly assume that *t* is free for *x* in Φ .

Proof example: $x+1 = 1+x, (x+1 > 1) \rightarrow (x+1 > 0) \vdash (1+x > 1) \rightarrow (1+x > 0)$ 1 x+1 = 1+x premise 2 $(x+1 > 1) \rightarrow (x+1 > 0)$ premise 3 $(1+x > 1) \rightarrow (1+x > 0) = e 1,2$

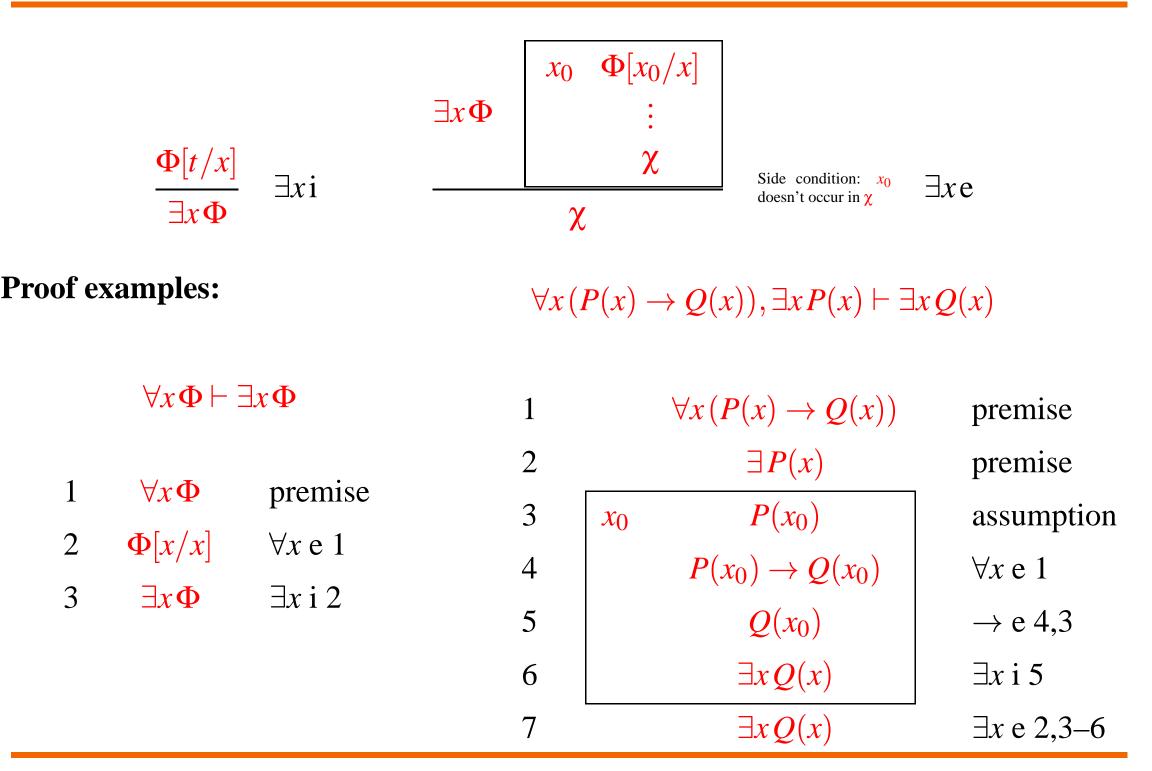
Proof Rules for Universal Quantification



Proof examples:

 $\forall x (P(x) \to Q(x)), \forall x P(x) \vdash \forall x Q(x)$ $P(t), \forall x (P(x) \rightarrow \neg Q(x)) \vdash \neg Q(t)$ P(t) $\forall x (P(x) \to Q(x))$ 1 1 premise premise $\forall x P(x)$ $2 \quad \forall x (P(x) \to \neg Q(x))$ 2 premise premise 3 $p(t) \rightarrow \neg Q(t)$ $\forall x \in 2$ $P(x_0) \rightarrow Q(x_0)$ 3 $\forall x \in 1$ x_0 $\neg Q(t)$ 4 $P(x_0)$ 4 $\forall x \in 2$ \rightarrow e 3,1 5 $Q(x_0)$ $\rightarrow e 3,4$ $\forall x Q(x)$ $\forall x i 3-5$ 6

Proof Rules for Existential Quantification



 $\exists x P(x), \forall x \forall y (P(x) \to Q(y)) \vdash \forall y Q(y)$

