Predicate Logic (1)

% The need for a richer language
% Predicate logic as a formal language

— terms — variables, functions

— formulas — predicates, quantifiers
— free and bound variables

— substitution

% Proof theory of predicate logic

— Natural deduction rules
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The Need for a Richer Language

Propositional Logic:

e Study of declarative sentences, statements about the world which can be
given a truth value

e Dealt very well with sentence components like: not, and, or, if --- then - --

e Limitations: cannot deal with modifiers like there exists, all, among, only.
Example: “Every student is younger than some instructor.”

e \We could identify the entire phrase with the propositional symbol p.

e However, the phrase has a finer logical structure. It is a statement about the
following properties:

— being a student
— being an instructor
— being younger than somebody else
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Predicates, Variables and Quantifiers

Properties are expressed by predicates. S |, Y are predicates.

S(andy): Andy is a student.

| (paul): Paul is an instructor.

Y (andy, paul ): Andy is younger than Paul.
Variables are placeholders for concrete values.

S(x): xis a student.

| (X): x is an instructor.

Y(X,y): X is younger than y.

Quantifiers make possible encoding the phrase:

“Every student iIs younger than some instructor.”

Two quantifiers: V — forall, and 3 — exists.

Encoding of the above sentence:

VX(S(X) = (FY(HY) AY(X,Y))))
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More Examples

“No books are gaseous. Dictionaries are books. Therefore, no dictionary is
gaseous.”

We denote: B(x): x is a book —3X(B(X) A G(X)), VX (D(X) — B(X))
G(x): x is gaseous =
D(x): xis a dictionary —3X(D(x) A G(X))

“Every child is younger than his mother”

We denote: C(x): x is a child VXYY (C(X) AM(X,y) = Y(X,Y))
M(X,y) : xis y’s mother

Denote m(x): mother of x VX (C(X) — Y (x,m(x)))

Using the function mto encode the “mother of” relationship
IS more appropriate, since every person has a unique mother.
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More Examples (2)

“Andy and Paul have the same maternal grandmother”

VXVWUYV(M (X, y) AM(y,a) AM(u,v) AM(V, p) — X=U)

We have introduced a new, special predicate: equality.

Alternative representation:

Consider the relationship B(x,y): x is the brother of y. This relationship

must be encoded as a predicate, since a person may have more than one
brother.
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Predicate Logic as a Formal Language

Two sorts of “things” in a predicate formula:

e Objects such as a (Andy) and p (Paul). Function symbols also refer to
objects. These are modeled by terms.

e EXxpressions that can be given truth values. These are modeled by formulas.

A predicate vocabulary consists of 3 sets:

e Function symbols F: arity (i.e. number of arguments)
e Constants C.

e Predicate symbols 7; } Each predicate and function symbol comeswith afi xed

Elements of the formal language of predicate logic:

Terms

Formulas

Free and bound variables
Substitution
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Terms

Definition: Terms are defined as follows:

e Any variable Is a term;

e Any constantin C is a term;

o Ifty,....tharetermsand f € 7 hasarity n, then f(tq,...,t,) is a term;
e Nothing else is a term.

Backus-Naur definition: t ::= x|c| f(t,...,t) where x represents variables, c
represents constants in C, and f represents function in # with arity n.

Remarks:
e The first building blocks of terms are constants and variables.

e More complex terms are built from function symbols using previously buit
terms.

e The notion of terms is independent on the sets ¢ and .
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Formulas

Definition: We define the set of formulas over (F,P) inductively, using the
already defined set of terms over .

e If P iIs a predicate with n > 1 arguments, and t4,...,t, are terms over ¥,
then P(ty,...,t,) is a formula.

e If @ isa formula, then so is —®.

o If ®and W are formulas, thensoare DAY, DV Y, O — W,

o If @ isa formulaand x iIs a variable, then ¥x® and Ix® are formulas.

e Nothing else Is a formula.

BNF definition:
D = P(ty,... th) | (D) [ (PADP) [ (PV D) | (P — D) | (VXD) | (IXD)
where P is a predicate of arity n, tj are terms, i € {1,...,n}, xis a variable.

Convention: We retain the usual binding priorities of the connectives —,A, \VV, —.
We add that Vx and Jx bind like —.
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Example

Consider translating the sentence:
“Every son of my father is my brother”
Two alternatives:

e “Father of” relationship encoded as a predicate.
S(x,y): xis the son of .
F(X,y): xis the father of .
B(X,y): x is the brother of y.
m: constant, denoting “myself”.
Translation: VxVy(F (x,m) A Sy, x) — B(y,m))
e “Father of” relationship encoded as a function.
f(x): father of x.
Translation: Vx(S(x, f(m)) — B(x,m))
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Free and Bound Variables

Definition: Let ® be a formula in predicate logic. An occurrence of x
In @ is free in @ if it is a leaf node in the parse tree of ® such that there
IS no path upwards from that node x to a node Vx or dx. Otherwise, that
occurrence x Is called bound. For ¥Vx®, we say that ® — minus any of
Its sub-formulas Ix W, or VxW¥ — is the scope of VX, respectively Jx.

Formula:

VX ((P(x) = QX)) AS(x,Y))

A\ - /

Scopgof VX

X 1S bound.

y Is free.
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Examples of Free and Bound Variables

Formula: (Vx(P(x) AQ(x))) — (=P(x) vV Q(y))

Parse tree:
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Substitution

Variables are placeholders, so we must have means of replacing them with more
concrete information.

Definition: Given a variable x, a term t, and a formula @, we define @[t /x| to be
the formula obtained by replacing each free occurrence of variable x in ® with t.

(WX(P(X) AQ(X))) = (=P(X) VQ(Y)[T(xY) /X is
© (WX (P(X) AQ(X))) = (=P(f(x,y)) VQ(Y))

CEERO
N
©

(P

oge

@
Oa®

@
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Substitution (2)

Definition: Given a term t, a variable x, and a formula ®, we say that t
Is free for x in @ if no free x leaf in ® occurs in the scope of Yy or dy,
for every variable y occurring in t.

Remark: If t is not free for x in @, then the substitution ®|t/x| has
unwanted effects.

Example:

(SO A (VY (P(X) = Q(Y)))ly/x] 1s Sy) A (VY (P(y) = Q(Y)))

Avoid this by renaming Yy into Vz

(S(X) A (V2(P(x) = Q(2)))ly/¥ 1s Xy) A (Vz(P(y) = Q(2)))
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Proof Theory of Predicate Logic

e Natural deduction rules for propositional logic are still valid
e Natural deduction rules for predicate logic:

— proof rules from propositional logic;

— proof rules for equality;

— proof rules for universal quantification;
— proof rules for existential quantification.

e Quantifier equivalences
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Proof Rules for Equality

Convention: When we write a substitution in the form ®[t /x|, we implicitly
assume that t is free for x in @.

Proof example:
X+1=14+X(X+1>1) - (X+1>0)F(1+x>1)— (1+x>0)

1 X+1=1+X premise
2 (X+1>1)—(x+1>0) premise
3 (14+x>1)—(14+4x>0) =el?2
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Proof Rules for Universal Quantification

Proof examples:

VX (P(X) = Q(X)), VXP(X) F ¥YxQ(X)

S O A W DN P
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VX (P(X) = Q(X))
VXP(X)

X0

P(X0) — Q(Xo)
P(Xo)
Q(Xo)

vxQ(x)

premise
premise
vxel
vxe 2
—e 3,4
VX1 3-5

VXI

P(t), vx(P(x) = —~Q(x)) - =Q(t)

1
2
3
4

P(t)
VX (P(x) = =Q(X))
p(t) — —Q(t)
-Q(t)

premise
premise
vxe 2

—e3,1
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Proof Rules for Existential Quantification

®ft/x  _ .
X1
IX®P
Proof examples:
VXD - IXP
1 VXD premise
2 d[x/x] Vxel
3 IXP X1 2
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IXP

Xo ®[Xo/X

Side condition: Xg

doesn’t occur in ¥

X

Ixe

VX (P(X) = Q(X)), IXP(X) F IxQ(X)

~N~ OO O B W DN P

VX (P(X) = Q(X))
AP(x)

X0 P(xo)
P(x0) — Q(Xo)
Q(xo)
IXQ(x)

WQ(x)

premise
premise
assumption
vxel
—e4,3
3x15

Ix e 2,3-6
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Another Example

IXP(x), VXvy (P(x) = Q(Y)) - VyQ(y)

1 AXP(X) premise

2 VXYY (P(X) — Q(Y)) premise

3 Yo

4 X0 P(Xo) assumption
5 vy (P(x0) — Q(Y)) vxe?2

6 P(xo0) = Q(Yo) vye?2

7 Q(Yo) — 6,4

8 Q(Yo) Ixe 1,4-7
9 VyQ(y) Vyi 3-8
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