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The need for a richer language

Predicate logic as a formal language

– terms — variables, functions

– formulas — predicates, quantifiers

– free and bound variables

– substitution

Proof theory of predicate logic

– Natural deduction rules



The Need for a Richer Language
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Propositional Logic:

� Study of declarative sentences, statements about the world which can be
given a truth value

� Dealt very well with sentence components like: not, and, or, if ����� then �����

� Limitations: cannot deal with modifiers like there exists, all, among, only.

Example: “Every student is younger than some instructor.”

� We could identify the entire phrase with the propositional symbol p.

� However, the phrase has a finer logical structure. It is a statement about the
following properties:

– being a student

– being an instructor

– being younger than somebody else



Predicates, Variables and Quantifiers
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Properties are expressed by predicates. S, I, Y are predicates.

S
�
andy � : Andy is a student.

I
�
paul � : Paul is an instructor.

Y
�
andy � paul � : Andy is younger than Paul.

Variables are placeholders for concrete values.
S
�
x � : x is a student.

I
�
x � : x is an instructor.

Y
�
x � y � : x is younger than y.

Quantifiers make possible encoding the phrase:

“Every student is younger than some instructor.”

Two quantifiers: � — forall, and � — exists.

Encoding of the above sentence:

� x
�
S
�
x ��� � � y

�
I
�
y ��� Y

�
x � y �	�
�	�



More Examples
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“No books are gaseous. Dictionaries are books. Therefore, no dictionary is
gaseous.”

We denote: B
�
x � : x is a book

G
�
x � : x is gaseous

D
�
x � : x is a dictionary

� � x
�
B
�
x ��� G

�
x �	� � � x

�
D
�
x � � B

�
x �	�

�

� � x
�
D
�
x ��� G

�
x �	�

“Every child is younger than his mother”

We denote: C
�
x � : x is a child

M
�
x � y � : x is y’s mother

� x � y
�
C
�
x ��� M

�
x � y � � Y

�
x � y �
�

Denote m
�
x � : mother of x � x

�
C
�
x � � Y

�
x � m �

x �
�	�

Using the function m to encode the “mother of” relationship
is more appropriate, since every person has a unique mother.



More Examples (2)
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“Andy and Paul have the same maternal grandmother”

� x � y � u � v
�
M

�
x � y ��� M

�
y � a ��� M

�
u � v ��� M

�
v � p � � x � u �

We have introduced a new, special predicate: equality.

Alternative representation:

m
�
m
�
a �	��� m

�
m
�
p �	�

Consider the relationship B
�
x � y � : x is the brother of y. This relationship

must be encoded as a predicate, since a person may have more than one
brother.



Predicate Logic as a Formal Language
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Two sorts of “things” in a predicate formula:

� Objects such as a (Andy) and p (Paul). Function symbols also refer to
objects. These are modeled by terms.

� Expressions that can be given truth values. These are modeled by formulas.

A predicate vocabulary consists of 3 sets:

� Predicate symbols P ;
� Function symbols F ;
� Constants C.

Elements of the formal language of predicate logic:

� Terms
� Formulas
� Free and bound variables
� Substitution

Each predicate and function symbol comes with a fixed
arity (i.e. number of arguments)



Terms
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Definition: Terms are defined as follows:

� Any variable is a term;
� Any constant in C is a term;
� If t1, ����� ,tn are terms and f � F has arity n, then f

�
t1 ������� � tn � is a term;

� Nothing else is a term.

Backus-Naur definition: t :: � x
�
c
�
f
�
t ������� � t � where x represents variables, c

represents constants in C , and f represents function in F with arity n.

Remarks:

� The first building blocks of terms are constants and variables.

� More complex terms are built from function symbols using previously buit
terms.

� The notion of terms is independent on the sets C and F .



Formulas
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Definition: We define the set of formulas over
�
F � P � inductively, using the

already defined set of terms over F .

� If P is a predicate with n � 1 arguments, and t1, ����� ,tn are terms over F ,
then P

�
t1 ������� � tn � is a formula.

� If Φ is a formula, then so is � Φ.
� If Φ and Ψ are formulas, then so are Φ � Ψ, Φ � Ψ, Φ � Ψ.
� If Φ is a formula and x is a variable, then � xΦ and � xΦ are formulas.
� Nothing else is a formula.

BNF definition:

Φ :: � P
�
t1 ������� tn �

� �
� Φ � � � Φ � Φ � � � Φ � Φ � � � Φ � Φ � � � � xΦ � � � � xΦ �

where P is a predicate of arity n, ti are terms, i � � 1 �������
� n � , x is a variable.

Convention: We retain the usual binding priorities of the connectives � , � , � , � .
We add that � x and � x bind like � .



Example
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Consider translating the sentence:

“Every son of my father is my brother”

Two alternatives:

� “Father of” relationship encoded as a predicate.

S
�
x � y � : x is the son of y.

F
�
x � y � : x is the father of y.

B
�
x � y � : x is the brother of y.

m: constant, denoting “myself”.

Translation: � x � y
�
F
�
x � m ��� S

�
y � x � � B

�
y � m �
�

� “Father of” relationship encoded as a function.
f
�
x � : father of x.

Translation: � x
�
S
�
x � f

�
m �	� � B

�
x � m �	�



Free and Bound Variables
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Definition: Let Φ be a formula in predicate logic. An occurrence of x
in Φ is free in Φ if it is a leaf node in the parse tree of Φ such that there
is no path upwards from that node x to a node � x or � x. Otherwise, that
occurrence x is called bound. For � xΦ, we say that Φ — minus any of
its sub-formulas � xΨ, or � xΨ — is the scope of � x, respectively � x.

Formula:

� x
�	�

P
�
x � � Q

�
x �	��� S

�
x � y �
�

x is bound.

y is free.

� ��� �

Scope of
�

x

bound

free

�
x

�

�
S

P Q x y

x x



Examples of Free and Bound Variables
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Formula:
� � x

�
P
�
x ��� Q

�
x �
�	� � �

� P
�
x � � Q

�
y �
�

Parse tree:

P Q

x x x

P

Q

y

�

� x

�
�

�



Substitution
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Variables are placeholders, so we must have means of replacing them with more
concrete information.

Definition: Given a variable x, a term t, and a formula Φ, we define Φ
�
t � x � to be

the formula obtained by replacing each free occurrence of variable x in Φ with t.

�
� � x
�
P
�
x ��� Q

�
x �	�
� � �

� P
�
x � � Q

�
y �	�
� � f � x � y ��� x � is� � x

�
P
�
x ��� Q

�
x �
�	� � �

� P
�
f
�
x � y �	� � Q

�
y �	�

P Q

x x f

P

Q

y

x y

�

� x

�
�

�



Substitution (2)
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Definition: Given a term t, a variable x, and a formula Φ, we say that t
is free for x in Φ if no free x leaf in Φ occurs in the scope of � y or � y,
for every variable y occurring in t.

Remark: If t is not free for x in Φ, then the substitution Φ
�
t � x � has

unwanted effects.

Example:

�
S
�
x ��� � � y

�
P
�
x � � Q

�
y �	�
�	� � y � x � is S

�
y ��� � � y

�
P
�
y � � Q

�
y �
�	�

Avoid this by renaming � y into � z.

�
S
�
x ��� � � z

�
P
�
x � � Q

�
z �
�	�	� � y � x � is S

�
y ��� � � z

�
P
�
y ��� Q

�
z �
�	�



Proof Theory of Predicate Logic
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� Natural deduction rules for propositional logic are still valid

� Natural deduction rules for predicate logic:

– proof rules from propositional logic;

– proof rules for equality;

– proof rules for universal quantification;

– proof rules for existential quantification.

� Quantifier equivalences



Proof Rules for Equality
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t � t
� i

t1 � t2 Φ
�
t1 � x �

Φ
�
t2 � x � � e

Convention: When we write a substitution in the form Φ
�
t � x � , we implicitly

assume that t is free for x in Φ.

Proof example:
x � 1 � 1 � x � � x � 1 � 1 � � �

x � 1 � 0 � � �
1 � x � 1 ��� �

1 � x � 0 �

1 x � 1 � 1 � x premise

2
�
x � 1 � 1 � � �

x � 1 � 0 � premise

3
�
1 � x � 1 � � �

1 � x � 0 � � e 1,2



Proof Rules for Universal Quantification
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� xΦ
Φ

�
t � x � � xe

x0
...

Φ
�
x0 � x �

� xΦ
� x i

Proof examples:

� x
�
P
�
x � � Q

�
x �	� � � xP

�
x � � � xQ

�
x �

1 � x
�
P
�
x ��� Q

�
x �	� premise

2 � xP
�
x � premise

3 x0 P
�
x0 � � Q

�
x0 � � x e 1

4 P
�
x0 � � x e 2

5 Q
�
x0 � � e 3,4

6 � xQ
�
x � � x i 3-5

P
�
t � � � x

�
P
�
x � � � Q

�
x �
� � � Q

�
t �

1 P
�
t � premise

2 � x
�
P
�
x � � � Q

�
x �
� premise

3 p
�
t � � � Q

�
t � � x e 2

4 � Q
�
t � � e 3,1



Proof Rules for Existential Quantification
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Φ
�
t � x �

� xΦ
� x i

� xΦ
x0 Φ

�
x0 � x �
...
χ

χ
Side condition: x0
doesn’t occur in χ � xe

Proof examples:

� xΦ
� � xΦ

1 � xΦ premise

2 Φ
�
x � x � � x e 1

3 � xΦ � x i 2

� x
�
P
�
x � � Q

�
x �
� � � xP

�
x � � � xQ

�
x �

1 � x
�
P
�
x � � Q

�
x �	� premise

2 � P
�
x � premise

3 x0 P
�
x0 � assumption

4 P
�
x0 ��� Q

�
x0 � � x e 1

5 Q
�
x0 � � e 4,3

6 � xQ
�
x � � x i 5

7 � xQ
�
x � � x e 2,3–6



Another Example
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� xP
�
x � � � x � y

�
P
�
x � � Q

�
y �	� � � yQ

�
y �

1 � xP
�
x � premise

2 � x � y
�
P
�
x � � Q

�
y �	� premise

3 y0

4 x0 P
�
x0 � assumption

5 � y
�
P
�
x0 � � Q

�
y �	� � x e 2

6 P
�
x0 � � Q

�
y0 � � y e 2

7 Q
�
y0 � � 6,4

8 Q
�
y0 � � x e 1,4-7

9 � yQ
�
y � � y i 3–8


