Predicate Logic (2)

Semantics of predicate logic
% Models
% Semantic entailment
% Semantics of equality

% Undecidability of predicate logic
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Truth Values for Predicate Logic Formulas

In propositional logic, given the formula

(pV—q) = (g —p)
we can give it a truth value (7 or F') based on a given valuation

(assumed truth values for p and g).

What about the predicate logic formula

Vady ((P(x) V=0Q(y)) = (Q(x) = P(y)))

We could assign truth values to P(x) and Q(y) and, based on
that, compute a truth value for the entire formula. However, in
general, the variables express relationships between predicates,
and the assignment of truth values to atoms cannot be done ran-
domly.
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Dealing with Quantifiers

Variables are placeholders for any, or some, unspecified con-
crete value.

dx® We try to find some instance of x (some concrete value)
such that & holds for that particular instance of y. If this
succeeds, then Jx ® evaluates to 7'; otherwise (i.e. there
is no concrete value of x that realizes @) the formula
evaluates to F.

Vx® We try to show that for all possible instances of x, ®
evaluates to 7. If this is successful, Vx® evaluates to
T'; otherwise (i.e. if there exists some instance of x that
does not realize @), the formula evaluates to F'.

Models

Slide 3 €S3234  Logic and Formal Systems  Lecture 04 02/09/04

Definition: Let 7 be a set of function symbols and © a set of predicate
symbols, each symbol with a fixed number of required arguments. A
model M of the pair (7, P)consists of the following set of data:

1. A non-empty set A, the universe of concrete values;

2. for each f € F with n arguments, a concrete function [ : A7 — A;
and

3. for each P € P with n arguments, a subset PM C A" of tuples over A.

The distinction between f and f M and between P and P? is most im-
portant. f is a symbol, whereas [ M denotes a concrete Sfunction. Sim-
ilarly, P is a symbol, whereas PM is a concrete subset of A" , for some
natural number 7.
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Example — Real Numbers

Let 7 % {+,%,—} and P £ {= <, <,zero}, where +, *, — take 2 arguments,
and where =, <, < are predicates with 2 arguments, and zero is a predicate with
1 argument.

The model 7
1. The non-empty set A is the set of real numbers.

2. The function +7, +™, and —* take two real numbers as arguments and
return their sum, product, and difference, respectively.

3. The predicates =, <™, and <™ model the relations equal to, less than, and
strictly less than, respectively. The predicate zero™ holds for r iff r equals
to 0.

Example formula:
VaVy(zero(y) — x*y=y)

Example — Bit Strings
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Let F £ {e,-}, and P £ {<}, where ¢ is a constant, - is a
function of 2 arguments and < is a predicate with 2 argu-
ments.

The model M :

1. A is the set of binary strings over the alphabet {0, 1},
including the empty string €.

2. The interpretation of -* is the concatenation of strings.

3. <™ is the prefix ordering of strings, that is the set
{(s1,52) |51 is a prefix of s }.
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Bit String Formulas

Vx((x <x-e)A(x-e<x))
Every word is a prefix of itself concatenated with the empty word

IWVx(y <x)
There exists a word s that is the prefix of every word (in fact it is €).

Vady(y <x)
Every word has a prefix.

YWz ((x <y) = (x-z2<y-2))
If 51 is a prefix of s», then ;5> is a prefix of s;53 (doesn’t hold).

~By((r <) = (v <)
There is no word s such that whenever s is a prefix of some other word s,
it is the case that s is a prefix of s as well.
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Environments (Look-Up Tables)

Given a formula Vx®, or dx®P, we intend to check whether
@ holds for all, respectively some, value a in our model. We
have no way of expressing this in our syntax.

We are forced to interpret formulas relative to an environ-
ment (look-up table), that is, a mapping from variable sym-
bols to concrete values.

[:var— A

Definition (Updated Look-Up Tables): Let / be a look-up
table / : var — A, and let a € A. We denote by /[x — a] the
look-up table which maps x to ¢ and any other variable y to

1(y).
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The Satisfaction Relation

Definition: Given a model H for a pair (7, %) and given an environment /, we define
the satisfaction relation

M= @
for each formula @ over the pair (F, )by structural induction on @. The denotation
M =, @ says that @ computes to 7' in the model A wrt the environment /.

P: If @ is of the form P(1y,12,...,1,), then we interpret the terms 7,15, .. ,1, in our
set A by replacing all variables with their values according to /. In this way we
compute concrete values ay,a,...,a, of A for each of these terms, where we
interpret any function symbol / € F by f*. Now M |=; P(11,...,1,) holds iff
(ai,...,an) € PM.

Vax: The relation M = Vx'¥ holds iff M =, ¥ holds for all a € A.
Jx: The relation M = Sx ¥ holds iff M =, ‘¥ holds for some a € A.

—: The relation M =; =¥ holds iff it is not the case that M |=; ¥’ holds.

V: The relation M = ¥, V¥, iff M = ¥ or M =; ¥, holds.

A: The relation M =, W AW, iff M = ¥, and M |=; ¥ holds.

— The relation M = ¥ — W iff M |=; > holds whenever M ;¥ holds.

Slide 9 €S3234  Logic and Formal Systems  Lecture 04 02/09/04

Example

Let ¥ £ {alma} and P Z {loves}, where alma is a constant and
loves is a predicate with two arguments. The model M we choose
here consists of the set A 22 {a, b, ¢}, the constant function alma® £
a and the predicate loves™ Z {(a,a), (b,a),(c,a)}. We want to
check whether the model M satisfies

None of Alma’s lovers’ lovers love her.

Translation into predicate logic:

VxVy (loves(x,alma) A loves(y,x) — —loves(y,alma))

The model M does not satisfy the formula. However, if we change
the interpretation of loves to be loves™ = {(b,a), (c,b)}, then the
new model satisfies the formula above.
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Semantic Entailment

Definition: Let @, D,,...,P,, ¥, be formulas in predicate
logic. Then, ®;,®,,...,P, = ¥ denotes that, whenever
M = @i, 1 <i<n,then M |=; P, for all models M and
look-up tables /.

The = symbol is overloaded.
M = P denotes satisfiability
Dy,..., P, = ¥ denotes semantic entailment

Semantic Entailment — Example 1
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Vx (P(x) = Q(x)) =VxP(x) = VxO(x)

Let M be a model satisfying Vx (P(x) — O(x)). We need
to show that M satisfies VxP(x) — VxQ(x) as well. On
inspecting the definition of M = ¥ — ¥,, we see that
we are done if not every element of A satisfies P. Oth-
erwise, every element does satisfy P. But since M satis-
fies Vx (P(x) — Q(x)), the latter forces every element of our
model to satisfy O as well. By combining these 2 cases (i.e.
either all elements or M satisfy P, or not), we have shown
that M satisfies VxP(x) — VxQ(x).
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Semantic Entailment — Example 2

Semantics of Equality

VxP(x) = VxQ(x) = Vx(P(x) — Q(x))

This sequent doesn’t hold. Indeed, let ’ be a model that satisfies VxP(x) —
VxQ(x). If A’ is its underlying set and PM" and QM’ are the corresponding in-
terpretations of P and Q, then M’ |= VxP(x) — VxQ(x) simply says that, if P’
equals A’, then QM must equal A as well. However, if P/ " does not equal M,
then this implication is vacuously true. It is now easy to construct a counterexam-
ple.

A {a,b}, P % {a}, and 0™ £ {b}. Then

Most models have natural interpretations, but semantic en-
tailment
(bl7"'7(bll ':\P

really depends on all the possible models, even those that do
not make sense. This means that a predicate may have any
interpretation.

However, there is a famous exception: equality. The equal-
ity predicate must always be interpreted as the equality rela-
tion on the set A. If, for example, A = {a,b,c}, then =M ig

{(a,a),(b,D),(c,c)}.

M’ | VxP(x) — VxO(x)
holds, while
M' = Vx (P(x) = O(x))
doesn’t hold.
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Undecidability of Predicate Logic

Decidability:

e Given a sequent @y,...,D, =¥, is it possible to know whether there is a
proof for it. Answer: NO.

e Given a semantic entailment sequent ®,/dors, @, - ¥, is it possible to
know if it holds? Answer: NO.

Soundness:
e If we have a proof of @y,...®, ¥ hold? Answer: YES.
Correctness:

o If we know that @y, ..., ®, =¥ holds, is there a proof of @, [dots, P, - ¥?
Answer: YES.

Completeness = Corectness + Decidability. Predicate logic is undecidable, and
therefore incomplete.
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