Predicate Logic (2)

Semantics of predicatelogic
% Models

Y Semantic entailment

% Semantics of equality

% Undecidability of predicate logic
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Truth Values for Predicate Logic Formulas
In propositional logic, given the formula

(PV—0) — (q— p)

we can give it a truth value (T or F) based on a given valuation
(assumed truth values for p and q).

What about the predicate logic formula

vx3y ((P(x) vV =Q(y)) — (Q(X) = P(y)))

We could assign truth values to P(x) and Q(y) and, based on
that, compute a truth value for the entire formula. However, In
general, the variables express relationships between predicates,
and the assignment of truth values to atoms cannot be done ran-
domly.
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Dealing with Quantifiers

Variables are placeholders for any, or some, unspecified con-
crete value.

IXP We try to find some instance of x (some concrete value)
such that @ holds for that particular instance of y. If this
succeeds, then Ix® evaluates to T; otherwise (i.e. there
IS no concrete value of x that realizes ®) the formula
evaluates to F.

vx® We try to show that for all possible instances of x, ®
evaluates to T. If this is successful, Vx® evaluates to
T; otherwise (i.e. If there exists some instance of x that
does not realize @), the formula evaluates to F.
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Models

Definition: Let F be a set of function symbols and 7 a set of predicate
symbols, each symbol with a fi xed number of required arguments. A
model 2 of the pair (¥, P)consists of the following set of data:

1. A non-empty set A, the universe of concrete values;

2. for each f € ¥ with n arguments, a concrete function 7/ : A" — A:
and

3. for each P € 2 with n arguments, a subset P C A" of tuples over A.

The distinction between f and ™, and between P and P™ is most im-
portant. f isa symbol, whereas f* denotes a concrete function. Sim-
ilarly, P is a symbol, whereas P is a concrete subset of A", for some
natural number n.
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Example — Real Numbers

Let ¥ = {+,%,—}and P = {=,<,<,zero}, where +, *, — take 2 arguments,
and where =, <, < are predicates with 2 arguments, and zero is apredicate with
1 argument.

The model 9
1. Thenon-empty set A isthe set of real numbers.

2. The function +7, «™ and —™ take two rea numbers as arguments and
return their sum, product, and difference, respectively.

3. Thepredicates=™, <™ and <™ model the relations equal to, lessthan, and
strictly less than, respectively. The predicate zero™ holds for r iff r equals
to 0.

Example formula:
VXVY(zero(y) — Xxy=Y)
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Example — Bit Strings

Let 7 = {e -}, and P = {<}, where e is a constant, - is a
function of 2 arguments and < Is a predicate with 2 argu-
ments.

The model M

1. A'is the set of binary strings over the alphabet {0,1},
Including the empty string &.

2. The interpretation of - is the concatenation of strings.

3. <™ js the prefix ordering of strings, that is the set
{(s1,2) |s1 is a prefix of sp}.
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Bit String Formulas

VX(X<X-e)A(X-e<X))
Every word is aprefi x of itself concatenated with the empty word

YVX(y < X)
There exists aword sthat is the prefi x of every word (infact it ise).

Vxdy (y < X)
Every word has a prefi x.

VXYWZ((X<Y) = (Xx-2<Y-2))
If s; Isaprefi x of 9, then s;sp isaprefi X of 553 (doesn’t hold).

—3IXVY (X <y) = (Y< X))

There is no word s such that whenever sis a prefi x of some other word g,
It isthe casethat s; isaprefi x of saswell.
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Environments (Look-Up Tables)

Given a formula Vx®, or Ix®, we intend to check whether
® holds for all, respectively some, value a in our model. We
have no way of expressing this In our syntax.

We are forced to interpret formulas relative to an environ-
ment (look-up table), that is, a mapping from variable sym-
bols to concrete values.

| :var — A

Definition (Updated Look-Up Tables): Let | be a look-up
table | : var — A, and let a € A. We denote by |[x — a| the
look-up table which maps x to a and any other variable y to

1(Y)-
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The Satisfaction Relation

Definition: Given amodel 9/ for apair (F,P) and given an environment |, we defi ne

the satisfaction relation
ME= @

for each formula ® over the pair (7, )by structura induction on ®. The denotation
M =) ® saysthat ® computesto T in the model 2/ wrt the environment |.

P. If ®isof theform P(ty,to,...,t,), then we interpret the termsty,to, ...ty in our
set A by replacing all variables with their values according to |. In this way we
compute concrete values a;,a,...,a, of A for each of these terms, where we
interpret any function symbol f € 7 by f*. Now M |= P(ty,...,t,) holds iff
(ag,...,an) € PM,

vx: Therelation M = VxW holdsiff M = .4 ¥ holdsfor al ac A.

. Therelation M = IxW holdsiff M = .4 LIJ holds for somea € A.

. Therelation M = =¥ holdsiff it isnot the Casethat M =) W holds.
Therdation M =) W1 Vv Wy iff M = W1 or M = W2 holds.

Therdation M = W1 AWy iff M = W1 and M =) W2 holds.

Therdation M =) W1 — Wy iff M =, W2 holds whenever M = W1 holds.

L]
X

L > <
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Example

Let ¥ = {alma} and P = {loves}, where alma is a constant and
loves is a predicate with two arguments. The model 2 we choose

def

here consists of the set A = {a, b, c}, the constant function alma™ =
a and the predicate 1loves™ = {(a,a),(b,a),(c,a)}. We want to
check whether the model 2/ satisfies

None of Alma’s lovers’ lovers love her.

Translation into predicate logic:

VXVY(loves(X,alma) A loves(y,X) — —loves(y,alma))

The model 2 does not satisfy the formula. However, if we change
the interpretation of loves to be loves™ = {(b,a), (c,b)}, then the
new model satisfies the formula above.
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Semantic Entailment

Definition: Let ®q,®o, ... P, W, be formulas in predicate
logic. Then, @, s, ..., P, = W denotes that, whenever
M = i, 1 <i<n,then M =, ®, for all models M and
look-up tables |.

The = symbol is overloaded.
M = ® denotes satisfiability
P4,..., P, = W denotes semantic entailment
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Semantic Entailment — Example 1

VX (P(X) = Q(X)) = YXP(X) — ¥XQ(X)

Let 2 be a model satisfying Vx(P(x) — Q(x)). We need
to show that A satisfies VxP(x) — VxQ(x) as well. On
Inspecting the definition of M = ¥ — Wy, we see that
we are done If not every element of A satisfies P. Oth-
erwise, every element does satisfy P. But since A satis-
fies VX (P(x) — Q(X)), the latter forces every element of our
model to satisfy Q as well. By combining these 2 cases (l.e.
either all elements or 9/ satisfy , or not), we have shown
that M satisfies VxP(x) — VxQ(X).
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Semantic Entailment — Example 2

VXP(X) — VXQ(X) = VX (P(X) — Q(X))

This sequent doesn’t hold. Indeed, let 2/’ be a model that satisfi es VxP(x) —
vxQ(x). If A isits underlying set and P?"" and Q™" are the corresponding in-
terpretations of P and Q, then M’ = VxP(x) — VxQ(x) simply says that, if P
equals A, then Q™" must equal A’ aswell. However, if P does not equal M,
then thisimplication is vacuoudly true. It isnow easy to construct a counterexam-

ple.
A = {a,b}, P = {a},and QM = {b}. Then
M’ = VXP(X) — VXQ(X)

holds, while
M’ = ¥x(P(x) = Q(x))

doesn’t hold.
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Semantics of Equality

Most models have natural interpretations, but semantic en-
tallment

q)]_,...,cbn:q')

really depends on all the possible models, even those that do
not make sense. This means that a predicate may have any
Interpretation.

However, there Is a famous exception: equality. The equal-
Ity predicate must always be interpreted as the equality rela-
tion on the set A. If, for example, A = {a,b,c}, then = is

1(a,a),(b,b),(c,c);.
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Undecidability of Predicate Logic

Decidability:

e Given asequent ®@1,..., ®, = W, isit possible to know whether there is a
proof for it. Answer: NO.

e Given a semantic entallment sequent @4, ldots, @, = WP, Is it possible to
know If 1t holds? Answer: NO.

Soundness:

e |f wehaveaproof of ®4,...P, P hold? Answer: YES.

Correctness:

o If weknowthat ®1,..., @, =W holds, isthereaproof of ®1,ldots ®, - P?
Answer: YES.

Completeness = Corectness + Decidability. Predicate logic is undecidable, and
therefore incomplete.
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