Resolution and Logic Programming

% Ground resolution

% Unification and occur check

% General Resolution

% Logic Programming

% SLD-resolution

% The programming language Prolog

= Syntax
= Arithmetic
— LIStS

Slide 1 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Motivation (1)

e We want to show ® = P, for two propositional formu-
las &, W,

e Assume DISDiA--- APy, INCNF, and WiISLiA--- A
Lm, a conjunction of literals.

e Showing ® = W is equivalent with showing that the set
of formulas {®1, ..., Py, —W} is unsatisfiable.

e Resolution: a procedure Res(x1,X2) applied to two
formulas, and returning a (simpler) formula ¥, such
that, if {X1,X2,x} is unsatisfiable, then so is {x1,X2}.

Slide 2 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Motivation (2)

e \WWe hope to produce the iteration

{cD]_, c ooy (Dn, _lLJ}
{Cbl, Ceey (Dn, —IU, RGS(—ILP, (Dk1> — Xl}
{(Dla IO q)na _'LJ7X17 ReS(X]-? cbkz) — XZ}

{®P1,..., P, =W X1, .. X1—1,Res(X1—1,Py) = L} — unsatisfiable

where 1 <k <n,1<i</.

e According to the property on the previous slide, If the last set Is
unsatisfiable, then so is the first set.

e A procedure showing that a set of formulas Is unsatisfiable iIs called
a refutation procedure.

Slide 3 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

CNF and Clausal Form (1)

e Given the CNF propositional formula ® = ®1 A @, where d;
are disjuncts, 1 <1 <n

e Foreach!, 1 <i<n, @ =—-pj1V-pi2V---Vapi VgLV V
dil;

o Ojisequivalentto pjgA--- APk — dir V-V 0, which we call
a clause.

o \We represent the clause by pis, ..., Pik — di1,---, i,

e \We represent @ as the set of clauses

{(pi1,---,Pik, — Gits---,Gil)s---, ()1 <i<n}
which we call the clausal form of @.

Slide 4 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

CNF and Clausal Form (2)

—(p1 A=+ A pk) can be written as p; A - A
Pk — [,0raspm,...,Px —

gy V---\V(canbewrittenas L — qq,...,q,
oras— Qi,...,q

| canbewrittenas | — T, and isdenoted by
(empty clause).

Slide 5 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Ground Resolution

Given two clauses

X1 P1--5 P+« Py — 01, .- Ony
X2-I,...T"m, =7 31,...§...5n,

If px and 5 are the same propositional symbol, then Res(x1,X2) is

P1,--.5 Pk—1, pk+1,---,pm1r1,---,rm2 _>q17°°°7qn17317°'°7S|—17S|+17'°'7Snz

This is similar to the following cancelling rule in arithmetic.

at+b = c
c = d+e
at+b+¢ = ¢ +d+e

Slide 6 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Ground Resolution Example

Slide 7

IS pA(Q
IS
IS
IS r

USRI

O

X1 = Res(®1,W) is p,q—
X2 = Res(X1,P2) IS q—
X3 = Res(x2,®3) is O

Alternatively

X1 = Res(P1,P5) is q—r
X2 = Res(X1,®P3) IS —r
X3 =Res(x2,W) is O

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Predicate Logic Clauses

A predicate logic clause:
p(xy),a((x),2) = r(y,zZ,w),s(g(z),w)
Meaning:

VXYYV ZAW (P(X,y) AQ(F(X),2) = r(Y;Z,w) V $(9(2), w))

e First order clauses are a subset of predicate logic: not all predicate
logic formulas can be expressed as clauses.

e They are more general than a Turing machine: can specify all pos-
sible computations.

Slide 8 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Non-Ground Resolution

Consider the following first order clauses.

Xl:Al,---,Ak,---,Am1—>Bl,---,Bnl
XZC]_,,CmZ%D]_,,Dh,DnZ

where the As, Bs, Cs, and Ds are first order atoms. Assume there ex-
Ists a substitution 6 such that A6 = D;6. We call 6 a unifier. Then
Res(x10,X20) is

Ale, e ,Ak_le,Ak+19, - ,Amle,Cle, e ,Cnle —
B16,...,Bm,0,D16,...,D,_16,D;.16,...,Dp,0

which Is the same as

(A17°'°7Ak—17Ak—|—17°'°7Am17C17“'7Cn1 —
B1,---,Bm,D1,-..,D|_1,Di41,...,Dn,)0

Slide 9 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Non-Ground Resolution Example

X1 1 pXy)—dy,2)
X2 1 q(f(w),v) =r(v)
6 @ [f(w)/y,z/V]
X160 © p(x f(w)) —q(f(w),2z)
X260 q(f(w),z) —=r(2)

Res(X16,X20) : p(x, f(w)) —r(2)

Slide 10 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Unification, MGU

Giventwo atoms, A, B, can we fi nd aunifying sub-
stitution 0, such that AG = BO? Answer: YES

A most general unifier (mgu) 1saunifying substi-
tution 6 such that for every other unifi er 8, there
exists a substitution o such that

AB’
BO' = (AO)o

|
2
Q

Slide 11 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Unification Algorithm

The following algorithm computes the mgu of two atoms A and B, or returns “no
solution” If no such mgu exists.

If the predicate symbols of A and B are not identical, return “no solution”.
From p(t1,...,t) = p(t1,...,t,) derive the set of equations {t; =t7,...,tk =1 }.
Erase all equations of the form x = x, where x Is a variable.

Transform all equations of the form t = x, where t Is not a variable, into x =t.
Let t’ = t” be an equation where t’ and t” are not variables. If the function
symbols of t’ and t” are not identical, return “no solution.” Otherwise, replace
the equation f(t1,...,t,) = f(t{,...,t/) by the equations t] =t7, ..., t, =1t

6. Let x =1 be an equation such that x has another occurrence in the set of equa-
tions. If t contains x, return “no solution.” Otherwise replace all other occur-
rences of x by t.

ok wn e

Repeat steps 4, 5, and 6 until it is no longer possible. If the “no solution” answer has
not been produced yet, all equations are of the form x = t, where t does not contain x.
The mgu contains all the bindings t /x, where x =t is an equation in our set.

Slide 12 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Example of Applying the Unification Algorithm

Unify the atoms

p(x, f(x,h(x),y)) and p(g(y), f(9(2), W, 2))

First derive the equations:

Apply step 4 and replace (4) by

(6) w=h(x)

Slide 13 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Example (2)

Current set:

(1)

(2')

(3') w=h(x)
(4')

Apply step 6 and use (1’) in (2’) and
(3°)

<
|

a(y)
) =0(2)
(9(y))

T2
<
:T

V4

Slide 14

Replace (2") by
y =2z < already In the set

Use (4”) in (1") and (3"”). The set
IS NOW:

X=10(2)
w=h(g(2))
y=12

Substitution:

9(2)/%, h(g(2))/w, z/y]

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Example (3)

p(x, T(x,h(x),¥))[9(2)/x, h(g(2)) /W, z/y] IS

p(9(2), f(9(2),h(9(2)),2))

p(aly), 1(9(2),w,2))[9(2) /%, h(9(2)) /W, Z/y] Is

p(9(2), f(9(2),h(9(2)),2))

Occur Check

Step 6 in the unification algorithm can be very expensive.
Consider unifying

p(X17X27 e 7Xn7X0) and p(f(X07X0)7 f(X17X1)7 seey f(Xn,Xn))

This produces:

x1 = f(X0,%)

X2 = T(f(Xo0,%0), f(X0,%0))

X, = term with 2" occurrences of xg
Xo = term with 21 occurrences of xg

Using step 6, we must return “no solution” ; detecting the fact that xg
occurs in the right hand side of last equation may require exponential
time.

Slide 16 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

General Resolution

Consider the following first order clauses.

)(1:A]_,...,Ak,...,Aml—>Bl,...,Bnl
X2C177sz_>D177DI77Dn2

where the As, Bs, Cs, and Ds are first order atoms. Denote by 6 the mgu
of Ax and D;. Then Res(X1,X2) is

(AJ_)"'7Ak—17Ak—|—17'"7Am17C17°"7Cn1 —
Bt,.,Bm,D1,...,D_1,D111,...,Dn,)8

If there exist no two unifiable atoms A and D,, then the resolution rule
IS undefined.

Resolution procedure: Let S be a set of clauses and define $ = S
Assume that S has been constructed. Choose two clauses X1, X2 € S
such that Res(x1, x2) is defined. If Res(x, X2) = O, the original set Sis
unsatisfiable. Otherwise, construct $.1 = S URes(X1,%2). IfS.1 =S
for all possible pairs x1 and X2, then Sis satisfiable.

Slide 17 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Example of General Resolution

Original set:

Slide 18

NOo Ok wdE

p(x) — a(x),r(x, f(x))
p(x) — d(x),s(f(x))
—t(a)

— p(a)

r(ay) —t(y)
t(x),q(x) —

t(x),s(x) —

Application of the resolution procedure:

8.
9.

10.
11.
12.
13.
14.
15.

q(a) — a/x] 3,6
—q(a),s(f(a)) [a/X 2,4
— s(f(a)) 8,9
—q(a),r(a f(a)) [a/X 14
—r(a, f(a)) 8,11
—t(f(a)) f(a)/y] 5,12
s(f(a)) — f(a)/x] 7,13
O 10,14

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Soundness and Completeness of Resolution

Slide 19

Soundness. If the unsatisfi able clause O Is de-
rived during the general resolution procedure, then
the original set of clauses is unsatisfi able.

Completeness. If aset of clauses is unsatisfi able,

then the empty clause
olution procedure.

can be derived by the res-

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Logic Programming

From now on, instead of writing clauses as
A]_,,Am—> B]_,...,Bn
we shall prefer to write clauses as

B1,...,Bh < Aq,...,Am

For n = 1 we have Horn clauses, typically denoted as

H« A ... A

H —the head, A ,...,An— the body

If n =0, the clause is a goal.

If n=1and m= 0 (body Is empty), we have a fact.
A logic program is a set of Horn clauses.

Slide 20 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Resolution for Logic Programs

In what follows, we shall introduce restrictions for the res-
olution procedure that would make it more computationally
efficient.

Definition: A computation rule is a rule for choosing lit-
erals in a goal clause. A search rule is a rule for choosing
clauses to resolve with the chosen literal in a goal clause.

Typical computation rule: leftmost atom in a goal I".
Typical search rule: clauses are tried in the order in which
they are written.

Slide 21 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Example of Resolution for Logic Programs

Logic program:

Slide 22

o 01k e

d(X,y) < p(X,Yy)

a(x,y) < p(x,2),d(zy)

p(b,a) «
p(c,a) «
p(d,b) «
Goal: < q(d,a)

Applying the resolution procedure, with
computation and search rules.

d/x,a/y] 6,1
d/x,aly] 7,2
b/ 8,5

b/x,a/y] 9,1
103

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

The Programming Language Prolog

A Prolog program is, in its most basic form, a set of Horn clauses. Given
a goal, the execution of the program and the goal is achieved by applyin
the resolution procedure with the following rules:

Computation rule: choose literals from left to right in the goal.

Search rule: Choose clauses top-to-bottom as they are written in
the program text.

The resolution procedure augmented with these rules is called SLD-
resolution.

Syntax:

Predicate and function symbols start with lowercase letters.
Variables start with uppercase letters or underscore.

The arrow Is represented by the : - operator.

The dot . acts as a clause separator.

Slide 23 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Prolog Example

Slide 24

ancestor (X, Y) :- parent(XY).
ancestor(X,Y) :- parent (X, Z),ancestor(Z,Y).

parent (bob, al | en).
parent (cat herine, al |l en).

par ent (dave, bob). Goal: ancest or (fred, bob)
parent (el | en, bob). Answer: Yes
parent (fred, dave).
parent (harry, george). Goal: ancestor (fred, A
parent (1 da, george). Answer: A=dave
parent (] oe, harry). A=bob

A=al | en

Goal: ancestor (A al |l en)

Goal: ancest or (A, B)

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Execution of Prolog Programs. SLD-Tree.

ancestor(fred, A

[fred/X,W/X,A/ﬂ

parent (fred, A parent (fred, Z), ancestor(Z, A

[dave/A] ‘ ‘[dave/Z]
[] ancest or (dave, A)
A=dave [WX,NY]
par ent (dave, A) par ent (dave, Z), ancestor (Z, A
[bob/A] ‘ [bob/Z]
[] ancest or (bob, A)
A=bob [boblxw,Am
par ent (bob, A) parent (bob, Z), ancestor(Z, A
[aIIen/A]‘ [allen/z]
[] ancestor (all en, A)
A=allen [a||en/wx,A/Y]
parent (all en, A parent (al |l en, Z), ancestor(Z. A
fail fail

Slide 25 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Free and Bound Variables

Slide 26

When a substitution is computed, a pair x/t is
called abinding.

If t ISavariable, then x 1scalled free.
If t ISanon-variable term, then x iscalled bound.

Prolog uses special predicates for arithmetic, ac-
cessing fi les, etc. Such predicates have restrictions
on using free variables.

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Arithmetic Predicates

Slide 27

The predicate | s:

?- X 1s 2+3.
Answer: X=5

?- 5 1s 2+3.
Answer: Yes

?- 518 2+X
Error! Free variable not allowed
on the right side of i s

“Less then” predicate:

?- 0 < 1.
Answer: Yes

?- X =0, X <1
Answer: Yes

?- X <1, X =0.
Error! Free variable not allowed
on the right side of i s

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

A Factorial Program

Correct program:

factorial (0, 1).
factorial (N, X) : -
N >0, NLis N1, factorial (N1, X1), X i1s X1*N.

Goal: ?- factorial (5, X).
Answer: Xx=120

Wrong program:
factorial (0, 1).

factorial (N, X) : -
N >0, NLis N1, Xis X1*N, factorial (N1, X1).

Goal: ?- factorial (5, X).
Error!!!

Slide 28 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Lists (By Example)

Examples of lists:
1, 2, 3, 4]
] —empty list.
' 1/[2,3,4]] — sameas[1, 2, 3, 4],
sameas| (1,|(2,|(3,](4,nil))))

?- [HT] =11, 2,3,4].
Answer: H=1, T=[2, 3, 4]

?- H=a, T=[Db,c,d], X=[H T].
Answer: H=a, T=[Db,c,d], X=[a, b, c, d]

Warning:
?- H=[a, b,c], T=[d,e, f], X=[H T]
Answer: X=[[a, b, c],d, e,]

| H T] is syntactic sugar for | (H, T).
[] 1s syntactic sugar for ni | .

Slide 29 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Lists: append

append([], X X).
append([H T], X, [H T1]) :- append(T, X, T1).

Goal: ?- append([a, b,c],[d, e, f],A).
Answer: A=[a, b, c, d, e, f]

Goal: ?- append([a, b,c],A [a,b,c,d,e f]).
Answer: A=[d, e,]

Goal: ?- append(A B, [1, 2, 3]).
Answer: A=[], B=[1, 2, 3]

=[1], B=[2,3
=[1,2], B=[3
=[1, 2, 3], B=[]

Slide 30 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Lists: Sum of All Elements

sun([], 0).
sun([H T],X) :- sum(T,X1), X is X1+H.

Goals: sum([1, 2, 3, 4], X
Answer: A=10

sum([1, 2, 3, 4], 10)
Answer: Yes

sum([1, 2, 3, 4], 11)
Answer: No

sunm A, 10)
Error!!l

Slide 31 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

Lists: nenber

menmber (H, [H]) .
menber (X, [H T]) :- nenber (X T).

Goals: ?- nmenber(1,[1, 2, 3,4]). ?- nmenber (1, A).
Answer: Yes Answer: A=[1|]
A=[- 1]]
?- nmenber (10,[1, 2, 3,4]). A=l _, _, 1|]
Answer: No Infinite list of
bindings!!
?- menber(A[1, 2,3]).
Answer: A=1
A=2
A=3

Slide 32 CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04

