
Resolution and Logic Programming

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 1

Ground resolution

Unification and occur check

General Resolution

Logic Programming

SLD-resolution

The programming language Prolog

Syntax

Arithmetic

Lists

Motivation (1)

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 2

� We want to show Φ
� �

Ψ, for two propositional formu-
las Φ, Ψ.

� Assume Φ is Φ1 � ������� Φn, in CNF, and Ψ is L1 � �������
Lm, a conjunction of literals.

� Showing Φ
� �

Ψ is equivalent with showing that the set
of formulas � Φ1 	�
�
�
�	 Φn 	�� Ψ is unsatisfiable.

� Resolution: a procedure Res � χ1 	 χ2 � applied to two
formulas, and returning a (simpler) formula χ, such
that, if � χ1 	 χ2 	 χ is unsatisfiable, then so is � χ1 	 χ2 .

Motivation (2)

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 3

� We hope to produce the iteration

� Φ1 	�
�
�
�	 Φn 	 � Ψ
� Φ1 	�
�
�
�	 Φn 	 � Ψ 	 Res � � Ψ 	 Φk1 � �

χ1 � Φ1 	�
�
�
�	 Φn 	 � Ψ 	 χ1 	 Res � χ1 	 Φk2 � �
χ2

�� Φ1 	�
�
�
�	 Φn 	 � Ψ 	 χ1 	�
�
�
 χl � 1 	 Res � χl � 1 	 Φkl � � — unsatisfiable

where 1 ki n, 1 i l.

� According to the property on the previous slide, if the last set is
unsatisfiable, then so is the first set.

� A procedure showing that a set of formulas is unsatisfiable is called
a refutation procedure.

CNF and Clausal Form (1)

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 4

� Given the CNF propositional formula Φ � Φ1 � Φn, where Φi

are disjuncts, 1 i n

� For each i, 1 i n, Φi
� � pi1

� � pi2
� ����� � � piki

�
qi1

� ����� �

qili

� Φi is equivalent to pi1 � ����� � piki

� qi1
� ����� �

qili which we call
a clause.

� We represent the clause by pi1 	�
�
�
�	 piki

� qi1 	�
�
�
�	 qili

� We represent Φ as the set of clauses

� � pi1 	�
�
�
�	 piki

� qi1 	�
�
�
�	 qili � 	�
�
�
�	 � � � 1 i n
which we call the clausal form of Φ.

CNF and Clausal Form (2)

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 5

� �
p1 ����� pk � can be written as p1 �����

pk , or as p1 ��������� pk

q1 ����� ql can be written as q1 �������	� ql,
or as q1 �������
� ql

can be written as , and is denoted by
(empty clause).

Ground Resolution

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 6

Given two clauses

χ1 : p1 ��������� pk ������� pm1
� q1 ������� qn1

χ2 : r1 ������� rm2
� s1 ������� sl ����� sn2

If pk and sl are the same propositional symbol, then Res
�
χ1 � χ2 � is

p1 ��������� pk 	 1 � pk
 1 ��������� pm1r1 ��������� rm2
� q1 ��������� qn1 � s1 ��������� sl 	 1 � sl
 1 ��������� sn2

This is similar to the following cancelling rule in arithmetic.

a � b � c
c � d � e

a � b � c � c � d � e

Ground Resolution Example

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 7

Φ1 is p � q � r
Φ2 is � p
Φ3 is � q
Ψ is r �

χ1 � Res
�
Φ1 � Ψ � is p � q �

χ2 � Res
�
χ1 � Φ2 � is q �

χ3 � Res
�
χ2 � Φ3 � is �

Alternatively

χ1 � Res
�
Φ1 � Φ2 � is q � r

χ2 � Res
�
χ1 � Φ3 � is � r

χ3 � Res
�
χ2 � Ψ � is �

Predicate Logic Clauses

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 8

A predicate logic clause:

p
�
x � y � � q �

f
�
x � � z � � r

�
y � z � w � � s � g �

z � � w �
Meaning:

�
x
�

y
�

z � w
�
p
�
x � y � � q

�
f
�
x � � z � � r

�
y � z � w ��� s

�
g
�
z � � w ���

� First order clauses are a subset of predicate logic: not all predicate
logic formulas can be expressed as clauses.

� They are more general than a Turing machine: can specify all pos-
sible computations.

Non-Ground Resolution

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 9

Consider the following first order clauses.

χ1 : A1 ��������� Ak ��������� Am1
� B1 ��������� Bn1

χ2 : C1 ��������� Cm2
� D1 ��������� Dl ��������� Dn2

where the As, Bs, Cs, and Ds are first order atoms. Assume there ex-
ists a substitution θ such that Akθ � Dlθ. We call θ a unifier. Then
Res

�
χ1θ � χ2θ � is

A1θ ��������� Ak 	 1θ � Ak
 1θ ��������� Am1θ � C1θ ��������� Cn1θ �
B1θ ��������� Bm2θ � D1θ ��������� Dl 	 1θ � Dl
 1θ ��������� Dn2θ

which is the same as
�
A1 ��������� Ak 	 1 � Ak
 1 ��������� Am1 � C1 ��������� Cn1

�
B1 ��������� Bm2 � D1 ��������� Dl 	 1 � Dl
 1 ��������� Dn2 � θ

Non-Ground Resolution Example

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 10

χ1 : p
�
x � y � q

�
y � z �

χ2 : q
�
f
�
w � � v � r

�
v �

θ :
�
f
�
w � y � z v �

χ1θ : p
�
x � f

�
w ��� q

�
f
�
w � � z �

χ2θ : q
�
f
�
w � � z � r

�
z �

Res
�
χ1θ � χ2θ � : p

�
x � f

�
w ��� r

�
z �

Unification, MGU

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 11

Given two atoms, A, B, can we find a unifying sub-
stitution θ, such that Aθ � Bθ? Answer: YES.

A most general unifier (mgu) is a unifying substi-
tution θ such that for every other unifier θ

�
, there

exists a substitution σ such that

Aθ
�

�
�
Aθ � σ

Bθ
�

�
�
Aθ � σ

Unification Algorithm

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 12

The following algorithm computes the mgu of two atoms A and B, or returns “no
solution” if no such mgu exists.

1. If the predicate symbols of A and B are not identical, return “no solution”.
2. From p

�
t1 ��������� tk � � p

�
t
�
1 ��������� t

�
k � derive the set of equations

�
t1 � t

�
1 ��������� tk � t

�
k � .

3. Erase all equations of the form x � x, where x is a variable.
4. Transform all equations of the form t � x, where t is not a variable, into x � t.
5. Let t

� � t
���

be an equation where t
�

and t
���

are not variables. If the function
symbols of t

�
and t

���
are not identical, return “no solution.” Otherwise, replace

the equation f
�
t
�
1 ��������� t

�
k � � f

�
t
���
1 ��������� t ���

k � by the equations t
�
1 � t

���
1 , ����� , t

�
k � t

���
k .

6. Let x � t be an equation such that x has another occurrence in the set of equa-
tions. If t contains x, return “no solution.” Otherwise replace all other occur-
rences of x by t.

Repeat steps 4, 5, and 6 until it is no longer possible. If the “no solution” answer has
not been produced yet, all equations are of the form x � t, where t does not contain x.
The mgu contains all the bindings t x, where x � t is an equation in our set.

Example of Applying the Unification Algorithm

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 13

Unify the atoms

p
�
x � f

�
x � h �

x � � y ��� and p
�
g
�
y � � f

�
g
�
z � � w � z ���

First derive the equations:

�
1 � x � g

�
y ��

2 � f
�
x � h �

x � � y � � f
�
g
�
z � � w � z �

Apply step 5 and replace
�
2 � by

�
3 � x � g

�
z ��

4 � h
�
x � � w�

5 � y � z

Apply step 4 and replace
�
4 � by

�
6 � w � h

�
x �

Example (2)

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 14

Current set:
�
1

� � x � g
�
y ��

2
� � x � g

�
z ��

3
� � w � h

�
x ��

4
� � y � z

Apply step 6 and use (1’) in (2’) and
(3’)

�
1

��� � x � g
�
y ��

2
��� � g

�
y � � g

�
z ��

3
��� � w � h

�
g
�
y ����

4
��� � y � z

Replace
�
2

��� � by

y � z � already in the set

Use
�
4

��� � in
�
1

��� � and
�
3

��� � . The set
is now:

x � g
�
z �

w � h
�
g
�
z ���

y � z

Substitution:

�
g
�
z � x � h

�
g
�
z ��� w � z y �

Example (3)

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 15

p
�
x � f

�
x � h �

x � � y ��� �
g
�
z � x � h �

g
�
z ��� w � z y � is

p
�
g
�
z � � f

�
g
�
z � � h �

g
�
z ��� � z � �

p
�
g
�
y � � f

�
g
�
z � � w � z ��� �

g
�
z � x � h �

g
�
z ��� w � z y � is

p
�
g
�
z � � f

�
g
�
z � � h �

g
�
z ��� � z � �

Occur Check

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 16

Step 6 in the unification algorithm can be very expensive.

Consider unifying

p
�
x1 � x2 ��������� xn � x0 � and p

�
f
�
x0 � x0 � � f

�
x1 � x1 � ��������� f

�
xn � xn ���

This produces:

x1 � f
�
x0 � x0 �

x2 � f
�
f
�
x0 � x0 � � f

�
x0 � x0 ���

x3 � f
�
f
�
f
�
x0 � x0 � � f

�
x0 � x0 ��� � f

�
f
�
x0 � x0 � � f

�
x0 � x0 �����

���

xn � term with 2n occurrences of x0

x0 � term with 2n
 1 occurrences of x0

Using step 6, we must return “no solution” ; detecting the fact that x0

occurs in the right hand side of last equation may require exponential
time.

General Resolution

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 17

Consider the following first order clauses.

χ1 : A1 ��������� Ak ��������� Am1
� B1 ��������� Bn1

χ2 : C1 ��������� Cm2
� D1 ��������� Dl ��������� Dn2

where the As, Bs, Cs, and Ds are first order atoms. Denote by θ the mgu
of Ak and Dl . Then Res

�
χ1 � χ2 � is

�
A1 ��������� Ak 	 1 � Ak
 1 ��������� Am1 � C1 ��������� Cn1

�
B1 ��������� Bm2 � D1 ��������� Dl 	 1 � Dl
 1 ��������� Dn2 � θ

If there exist no two unifiable atoms Ak and Dl , then the resolution rule
is undefined.

Resolution procedure: Let S be a set of clauses and define S0 � S.
Assume that Si has been constructed. Choose two clauses χ1, χ2

� Si

such that Res
�
χ1 � χ2 � is defined. If Res

�
χ1 � χ2 � � � , the original set S is

unsatisfiable. Otherwise, construct Si
 1 � Si
�

Res
�
χ1 � χ2 � . If Si
 1 � Si

for all possible pairs χ1 and χ2, then S is satisfiable.

Example of General Resolution

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 18

Original set:

1. p
�
x � � q

�
x � � r � x � f

�
x ���

2. p
�
x � � q

�
x � � s � f

�
x ���

3. � t
�
a �

4. � p
�
a �

5. r
�
a � y � � t

�
y �

6. t
�
x � � q �

x � �
7. t

�
x � � s � x � �

Application of the resolution procedure:

8. q
�
a � � � a x � 3,6

9. � q
�
a � � s � f

�
a ��� � a x � 2,4

10. � s
�
f
�
a ��� 8,9

11. � q
�
a � � r � a � f

�
a ��� � a x � 1,4

12. � r
�
a � f

�
a ��� 8,11

13. � t
�
f
�
a ��� � f

�
a � y � 5,12

14. s
�
f
�
a ��� � � f

�
a � x � 7,13

15. � 10,14

Soundness and Completeness of Resolution

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 19

Soundness: If the unsatisfiable clause is de-
rived during the general resolution procedure, then
the original set of clauses is unsatisfiable.

Completeness: If a set of clauses is unsatisfiable,
then the empty clause can be derived by the res-
olution procedure.

Logic Programming

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 20

From now on, instead of writing clauses as

A1 ��������� Am
� B1 ��������� Bn

we shall prefer to write clauses as

B1 ��������� Bn � A1 ��������� Am

For n � 1 we have Horn clauses, typically denoted as

H � A1 ��������� Am

H — the head, A 1 ��������� Am — the body
If n � 0, the clause is a goal.
If n � 1 and m � 0 (body is empty), we have a fact.
A logic program is a set of Horn clauses.

Resolution for Logic Programs

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 21

In what follows, we shall introduce restrictions for the res-
olution procedure that would make it more computationally
efficient.

Definition: A computation rule is a rule for choosing lit-
erals in a goal clause. A search rule is a rule for choosing
clauses to resolve with the chosen literal in a goal clause.

Typical computation rule: leftmost atom in a goal Γ.
Typical search rule: clauses are tried in the order in which
they are written.

Example of Resolution for Logic Programs

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 22

Logic program:

1. q
�
x � y � � p

�
x � y �

2. q
�
x � y � � p

�
x � z � � q �

z � y �
3. p

�
b � a � �

4. p
�
c � a � �

5. p
�
d � b � �

6. Goal: � q
�
d � a �

Applying the resolution procedure, with
computation and search rules.

7. � p
�
d � a � � d x � a y � 6,1

8. � p
�
d � z � � q �

z � a � � d x � a y � 7,2
9. � q

�
b � a � � b z � 8,5

10. � p
�
b � a � � b x � a y � 9,1

11. � 10,3

The Programming Language Prolog

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 23

A Prolog program is, in its most basic form, a set of Horn clauses. Given
a goal, the execution of the program and the goal is achieved by applyin
the resolution procedure with the following rules:

Computation rule: choose literals from left to right in the goal.

Search rule: Choose clauses top-to-bottom as they are written in
the program text.

The resolution procedure augmented with these rules is called SLD-
resolution.

Syntax:

� Predicate and function symbols start with lowercase letters.
� Variables start with uppercase letters or underscore.
� The arrow is represented by the :- operator.
� The dot . acts as a clause separator.

Prolog Example

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 24

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

parent(bob,allen).
parent(catherine,allen).
parent(dave,bob).
parent(ellen,bob).
parent(fred,dave).
parent(harry,george).
parent(ida,george).
parent(joe,harry).

Goal: ancestor(fred,bob)
Answer: Yes

Goal: ancestor(fred,A)
Answer: A=dave

A=bob
A=allen

Goal: ancestor(A,allen)

Goal: ancestor(A,B)

Execution of Prolog Programs. SLD-Tree.

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 25

ancestor(fred,A)

parent(fred,A) parent(fred,Z),ancestor(Z,A)

ancestor(dave,A)

parent(dave,A)

ancestor(bob,A)

parent(bob,A) parent(bob,Z),ancestor(Z,A)

ancestor(allen,A)

parent(allen,A)
fail

parent(allen,Z),ancestor(Z.A)
fail

parent(dave,Z),ancestor(Z,A)

[fred/X,A/Y] [fred/X,A/Y]

[dave/A]

A=dave

[dave/Z]

[A/Y] [dave/X,A/Y]

[bob/A] [bob/Z]

[bob/X,A/Y]A=bob [bob/X,A/Y]

[allen/A] [allen/Z]

A=allen [allen/X,A/Y] [allen/X,A/Y]

Free and Bound Variables

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 26

When a substitution is computed, a pair x t is
called a binding.

If t is a variable, then x is called free.

If t is a non-variable term, then x is called bound.

Prolog uses special predicates for arithmetic, ac-
cessing files, etc. Such predicates have restrictions
on using free variables.

Arithmetic Predicates

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 27

The predicate is:

?- X is 2+3.
Answer: X=5

?- 5 is 2+3.
Answer: Yes

?- 5 is 2+X.
Error! Free variable not allowed
on the right side of is

“Less then” predicate:

?- 0 < 1.
Answer: Yes

?- X = 0, X < 1.
Answer: Yes

?- X < 1, X = 0.
Error! Free variable not allowed
on the right side of is

A Factorial Program

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 28

Correct program:

factorial(0,1).
factorial(N,X) :-

N > 0, N1 is N-1, factorial(N1,X1), X is X1*N.

Goal: ?- factorial(5,X).
Answer: X=120

Wrong program:

factorial(0,1).
factorial(N,X) :-

N > 0, N1 is N-1, X is X1*N, factorial(N1,X1).

Goal: ?- factorial(5,X).
Error!!!

Lists (By Example)

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 29

Examples of lists:
[1,2,3,4]
[] — empty list.
[1|[2,3,4]] — same as [1,2,3,4],

same as |(1,|(2,|(3,|(4,nil))))

?- [H|T] = [1,2,3,4].
Answer: H=1, T=[2,3,4]

?- H=a, T=[b,c,d], X=[H|T].
Answer: H=a, T=[b,c,d], X=[a,b,c,d]

Warning:
?- H=[a,b,c], T=[d,e,f], X=[H|T]
Answer: X=[[a,b,c],d,e,f]

[H|T] is syntactic sugar for |(H,T).
[] is syntactic sugar for nil.

Lists: append

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 30

append([],X,X).
append([H|T],X,[H|T1]) :- append(T,X,T1).

Goal: ?- append([a,b,c],[d,e,f],A).
Answer: A=[a,b,c,d,e,f]

Goal: ?- append([a,b,c],A,[a,b,c,d,e,f]).
Answer: A=[d,e,f]

Goal: ?- append(A,B,[1,2,3]).
Answer: A=[], B=[1,2,3]

A=[1], B=[2,3]
A=[1,2], B=[3]
A=[1,2,3], B=[]

Lists: Sum of All Elements

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 31

sum([],0).
sum([H|T],X) :- sum(T,X1), X is X1+H.

Goals: sum([1,2,3,4],X)
Answer: A=10

sum([1,2,3,4],10)
Answer: Yes

sum([1,2,3,4],11)
Answer: No

sum(A,10)
Error!!!

Lists: member

CS3234 — Logic and Formal Systems — Lecture 05 — 09/09/04Slide 32

member(H,[H|]).
member(X,[H|T]) :- member(X,T).

Goals: ?- member(1,[1,2,3,4]).
Answer: Yes

?- member(10,[1,2,3,4]).
Answer: No

?- member(A,[1,2,3]).
Answer: A=1

A=2
A=3

?- member(1,A).
Answer: A=[1|]

A=[,1|]
A=[, ,1|]
Infinite list of
bindings!!

